×

zbMATH — the first resource for mathematics

Classification of semifields of order 64. (English) Zbl 1202.12003
The authors construct by a computer search all semifields of order \(64\) up to isotopy. Only about one tenth of these were previously know. Extensive tables contain a lot of information on the new semifields. The paper finishes the search for all semifields of size less than or equal to \(125\). The algorithms are described in detail.

MSC:
12K10 Semifields
17A35 Nonassociative division algebras
51A40 Translation planes and spreads in linear incidence geometry
Software:
Magma
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albert, A.A., On nonassociative division algebras, Trans. amer. math. soc., 72, 296-309, (1952) · Zbl 0046.03601
[2] Albert, A.A., Finite noncommutative division algebras, Proc. amer. math. soc., 9, 928-932, (1958) · Zbl 0092.03501
[3] Albert, A.A., Finite division algebras and finite planes, Proc. sympos. appl. math., 10, 53-70, (1960) · Zbl 0096.15003
[4] Albert, A.A., Generalized twisted fields, Pacific J. math., 11, 1-8, (1961) · Zbl 0154.27203
[5] Bosma, W.; Cannon, J.; Playoust, C., The magma algebra system. I. the user language, J. symbolic comput., 24, 3-4, 235-265, (1997) · Zbl 0898.68039
[6] Calderbank, A.R.; Cameron, P.J.; Kantor, W.M.; Seidel, J.J., \(\mathbb{Z}_4\)-kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, Proc. London math. soc. (3), 75, 436-480, (1997) · Zbl 0916.94014
[7] Cordero, M.; Wene, G.P., A survey of finite semifields, Discrete math., 208/209, 125-137, (1999) · Zbl 1031.12009
[8] Dempwolff, U., Semifield planes of order 81, J. geom., 89, 1-16, (2008) · Zbl 1175.12003
[9] Dickson, L.E., Linear algebras in which division is always uniquely possible, Trans. amer. math. soc., 7, 370-390, (1906) · JFM 37.0111.06
[10] González, S.; Martínez, C.; Rúa, I.F., Symplectic spread based generalized kerdock codes, Des. codes cryptogr., 42, 2, 213-226, (2007) · Zbl 1138.94018
[11] Hall, M., The theory of groups, (1959), Macmillan
[12] Hentzel, I.R.; Rúa, I.F., Primitivity of finite semifields with 64 and 81 elements, Internat. J. algebra comput., 17, 7, 1411-1429, (2007) · Zbl 1143.17009
[13] Huang, H.; Johnson, N.L., 8 semifield planes or order 8^2, Discrete math., 80, 69-79, (1990) · Zbl 0699.51003
[14] Hughes, D.R.; Piper, F.C., Projective planes, Grad. texts in math., vol. 6, (1973), Springer-Verlag New York, Berlin · Zbl 0267.50018
[15] Jha, V.; Johnson, N.L., An analog of the albert – knuth theorem on the orders of finite semifields, and a complete solution to Cofman’s subplane problem, Algebras groups geom., 6, 1-35, (1989) · Zbl 0684.51003
[16] Kantor, W.M., Commutative semifields and symplectic spreads, J. algebra, 270, 96-114, (2003) · Zbl 1041.51002
[17] Kantor, W.M.; Williams, M.E., Symplectic semifield planes and \(\mathbb{Z}_4\)-linear codes, Trans. amer. math. soc., 356, 895-938, (2004) · Zbl 1038.51003
[18] Kantor, W.M., Finite semifields, () · Zbl 0811.51008
[19] Kleinfeld, E., Techniques for enumerating veblen – wedderburn systems, J. ACM, 7, 330-337, (1960) · Zbl 0099.15303
[20] Knuth, D.E., Finite semifields and projective planes, J. algebra, 2, 182-217, (1965) · Zbl 0128.25604
[21] May, J.P.; Saunders, D.; Wan, Z., Efficient matrix rank computation with applications to the study of strongly regular graphs, (), 277-284 · Zbl 1190.15003
[22] Menichetti, G., Algebre tridimensionali su un campo di Galois, Ann. mat. pura appl., 97, 293-302, (1973) · Zbl 0281.13005
[23] Menichetti, G., On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field, J. algebra, 47, 400-410, (1977) · Zbl 0362.17002
[24] Oyama, T., On quasifields, Osaka J. math., 22, 35-54, (1985) · Zbl 0561.51006
[25] Walker, R.J., Determination of division algebras with 32 elements, Proc. sympos. appl. math., 75, 83-85, (1962)
[26] Wene, G.P., On the multiplicative structure of finite division rings, Aequationes math., 41, 222-233, (1991) · Zbl 0747.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.