×

zbMATH — the first resource for mathematics

Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system. (English) Zbl 1201.80058
Summary: In the present study, mathematical modeling is performed to simulate the forced convection flow of Al\(_{2}\)O\(_{3}\)-water nanofluid in the radial flow cooling system using a single-phase approach. Computations are validated with experimental data available in the literature. Results show the same trend as revealed in most of the published works that the heat transfer coefficient increases with the increase of the Reynolds number and the nanoparticle volume fraction, though the increase in pressure drop is more significantly associated with the increase of particle concentration. When taking both the cooling performance and the adverse effect of pressure drop into consideration, no better heat transfer enhancement is found with the use of nanofluid compared to that of pure water under the laminar, medium-heat flux conditions in the radial flow system. Furthermore, the model considering Hamilton-Crosser formula for effective conductivity along with the equation developed by Brinkman for effective viscosity of nanofluid might result in the overprediction of the capability of applying nanofluids to remove heat.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76R05 Forced convection
80M12 Finite volume methods applied to problems in thermodynamics and heat transfer
76M12 Finite volume methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Masuda, H.; Ebata, A.; Teramea, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Netsu bussei 4, 227-233 (1993)
[2] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Signer, H. P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, vol. 231, ASME Publications 1995, pp. 99 – 105.
[3] Pak, B. C.; Cho, Y. I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. heat transfer 11, 151-170 (1998)
[4] Eastman, J. A.; Choi, S. U. S.; Li, S.; Soyez, G.; Thompson, L. J.; Dimelfi, R. J.: Novel thermal properties of nanostructured materials, J. metastable nanocryst. Mater. 2, 629-634 (1999)
[5] Xuan, Y. M.; Li, Q.: Investigation on convective heat transfer and flow features of nanofluids, J. heat transfer 125, 151-155 (2003)
[6] Ding, Y.; Alias, H.; Wen, D.; Williams, R. A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat mass transfer 49, 240-250 (2006)
[7] Jang, S. P.; Choi, S. U. S.: Cooling performance of a microchannel heat sink with nanofluids, Appl. therm. Eng. 26, 2457-2463 (2006)
[8] Ho, C. J.; Wei, L. C.; Li, Z. W.: An experimental investigation of forced convective cooling performance of a microchannel heat sink with al2o3/water nanofluid, Appl. therm. Eng. 30, 96-103 (2010)
[9] Pantzali, M. N.; Kanaris, A. G.; Antoniadis, K. D.; Mouza, A. A.; Paras, S. V.: Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int. J. Heat fluid flow 30, 691-699 (2009)
[10] Pantzali, M. N.; Mouza, A. A.; Paras, S. V.: Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE), Chem. eng. Sci. 64, 3290-3300 (2009)
[11] Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids, J. heat transfer 125, 567-574 (2003)
[12] Putra, N.; Roetzel, W.; Das, S. K.: Natural convection of nanofluids, Heat mass transfer 39, 775-784 (2003) · Zbl 1136.76489
[13] Zhang, X.; Gu, H.; Fujii, M.: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, J. appl. Phys. 100, 1-5 (2006)
[14] Nguyen, C. T.; Desgranges, F.; Roy, G.; Galanis, N.; Maré, T.; Boucher, S.; Mintsa, H. Angue: Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon, Int. J. Heat fluid flow 28, 1492-1506 (2007)
[15] Nguyen, C. T.; Desgranges, F.; Galanis, N.; Roy, G.; Maré, T.; Boucher, S.; Mintsa, H. Angue: Viscosity data for al2o3 – water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. sci. 47, 103-111 (2008)
[16] Mintsa, H. Angue; Roy, G.; Nguyen, C. T.; Doucet, D.: New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. sci. 48, 363-371 (2009)
[17] Prasher, R.; Song, D.; Wang, J.: Measurements of nanofluid viscosity and its implications for thermal applications, Appl. phys. Lett. 89, 133108 (2006)
[18] Yu, W.; Xie, H.; Chen, L.; Li, Y.: Investigation of thermal conductivity and viscosity of ethylene glycol based zno nanofluid, Thermochim. acta 491, 92-96 (2009)
[19] Sahoo, B. C.; Vajjha, R. S.; Ganguli, R.; Chukwu, G. A.; Das, D. K.: Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations, Pet. sci. Technol. 27, 1757-1770 (2009)
[20] Xuan, Y. M.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids, Int. J. Heat mass transfer 43, 3701-3707 (2000) · Zbl 0963.76092 · doi:10.1016/S0017-9310(99)00369-5
[21] Buongiorno, J.: Convective transport in nanofluids, J. heat transfer 128, 240-250 (2006)
[22] Rea, U.; Mckrell, T.; Hu, L. W.; Buongiorno, J.: Laminar convective heat transfer and viscous pressure loss of alumina – water and zirconia – water nanofluids, Int. J. Heat mass transfer 52, 2042-2048 (2009)
[23] Roy, G.; Nguyen, C. T.; Lajoie, P. -R.: Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices microstruct. 35, 497-511 (2004)
[24] Palm, S. J.; Roy, G.; Nguyen, C. T.: Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties, Appl. therm. Eng. 26, 2209-2218 (2006)
[25] I. Gherasim, G. Roy, C.T. Nguyen, D. Vo-Ngoc, Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids), Int. J. Therm. Sci., in press. doi:10.1016/j.ijthermalsci.2010.04.008.
[26] Saad, N. R.; Douglas, J. M.; Mujumdar, A. S.: Prediction of heat transfer under an axisymmetric laminar impinging jet, Ind. eng. Chem. fundam. 16, 148-154 (1977)
[27] Wang, X. S.; Dagan, Z.; Jili, L. M.: Heat transfer between a circular free impinging jet and a solid surface with non-uniform wall temperature or wall heat flux – 1. Solution for the stagnation region, Int. J. Heat mass transfer 32, 1351-1360 (1989) · Zbl 0674.76070 · doi:10.1016/0017-9310(89)90034-3
[28] Goldstein, R. J.; Sobolik, K. A.; Sool, W. S.: Effect of entrainment on the heat transfer to a heated circular air jet impinging on a flat surface, Trans. ASME 112, 608-611 (1990)
[29] Liu, X.; Lienhard, J. H.; Lombara, J. S.: Convective heat transfer by impingement of circular liquid jets, J. heat transfer 113, 571-582 (1991)
[30] Elison, B.; Webb, B. W.: Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regimes, Int. J. Heat mass transfer 37, 1207-1216 (1994)
[31] Ma, C. F.; Gan, Y. P.; Tian, Y. C.; Lei, D. H.; Gomi, T.: Liquid jet impingement heat transfer with or without boiling, J. therm. Sci. 2, 32-49 (1993)
[32] Garimella, S. V.; Nenaydykh, B.: Nozzle-geometry effects in liquid jet impingement heat transfer, Int. J. Heat mass transfer 39, 2915-2923 (1996)
[33] Lallave, J. C.; Rahman, M. M.; Kumar, A.: Numerical analysis of heat transfer on a rotating disk surface under confined liquid jet impingement, Int. J. Heat fluid flow 28, 720-734 (2007)
[34] Gherasim, I.; Roy, G.; Nguyen, C. T.; Vo-Ngoc, D.: Experimental investigation of nanofluids in confined laminar radial flows, Int. J. Therm. sci. 48, 1486-1493 (2009)
[35] Incropera, F. P.; Dewitt, D. P.: Fundamentals of heat and mass transfer, (1996)
[36] Koo, J.; Kleinstreuer, C.: A new thermal conductivity model for nanofluids, J. nanopart. Res. 6, 577-588 (2004)
[37] Chon, C. H.; Kihm, K. D.; Lee, S. P.; Choi, S. U. S.: Empirical correlation finding the role of temperature and particle size for nano-fluid (Al2O3) thermal conductivity enhancement, Appl. phys. Lett. 87, 153107 (2005)
[38] Einstein, A.: Investigation on the theory of Brownian movement, (1956) · Zbl 0071.41205
[39] Brinkman, H. C.: The viscosity of concentrated suspensions and solutions, J. chem. Phys. 20, 571-581 (1952)
[40] Mochizuki, S.; Yang, W. J.: Local heat transfer performance and mechanisms in radial flow between parallel disks, J. thermophys. Heat transfer 1, 112-116 (1987)
[41] Wen, D.; Ding, Y.: Formulation of nanofluids for natural convective heat transfer applications, Int. J. Heat fluid flow 26, 855-864 (2005)
[42] Hamilton, R. L.; Crosser, O. K.: Thermal conductivity of heterogeneous two-component systems, Ind. eng. Chem. fundam. 1, 182-191 (1962)
[43] Masoumi, N.; Sohrabi, N.; Behzadmehr, A.: A new model for calculating the effective viscosity of nanofluids, J. phys. D: appl. Phys. 42, 055501 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.