×

zbMATH — the first resource for mathematics

A lattice Boltzmann model for axisymmetric thermal flows through porous media. (English) Zbl 1201.80046
Summary: A new lattice Boltzmann model at representative elementary volume (REV) scale is proposed for axisymmetric thermal flows in porous media. In this model, a new equilibrium distribution function including porosity is proposed to describe the cases of variable porosity, and simple force term is adopted to achieve a better numerical stability. The numerical experiments, including five benchmark problems, demonstrate that the proposed LBM can be served as a feasible and efficient method for axisymmetric thermal flows through porous media.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
76M28 Particle methods and lattice-gas methods
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76R10 Free convection
PDF BibTeX Cite
Full Text: DOI
References:
[1] Pavel, B. I.; Mohamad, A. A.: An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media, Int. J. Heat mass transfer 47, 4939-4952 (2004)
[2] Al-Nimr, M. A.; Alkam, M. K.: Unsteady non-darcian forced convection analysis in an annulus partially filled with a porous material, J. heat transfer trans. ASME 119, 799-804 (1997)
[3] Alkam, M. K.; Al-Nimr, M. A.: Improving the performance of double-pipe heat exchanger by using porous substrates, Int. J. Heat mass transfer 42, 3609-3618 (1999) · Zbl 0944.76594
[4] Mohamad, A. A.: Heat transfer enhancements in heat exchangers fitted with porous media, Int. J. Thermal sci. 42, 385-395 (2003)
[5] Guo, Z. L.; Zhao, T. S.: A lattice Boltzmann model for convection heat transfer in porous media, Numer. heat transfer B fundam. 47, 157-177 (2005)
[6] Halliday, I.; Hammond, L. A.; Care, C. M.; Stevens, A.: Lattice Boltzmann equation hydrodynamics, Phys. rev. E 64, 011208 (2001) · Zbl 1168.76359
[7] Lee, T. S.; Huang, H.; Shu, C.: An axisymmetric incompressible lattice Boltzmann model for pipe flow, Int. J. Mod. phys. C 17, 645-661 (2006) · Zbl 1107.82367
[8] Reis, T.; Phillips, T. N.: Modified lattice Boltzmann model for axisymmetric flows, Phys. rev. E 75, 056703 (2007) · Zbl 1168.76360
[9] Reis, T.; Phillips, T. N.: Numerical validation of a consistent axisymmetric lattice Boltzmann model, Phys. rev. E 77, 026703 (2008)
[10] Zhou, J. G.: Axisymmetric lattice Boltzmann method, Phys. rev. E 78, 036701 (2008)
[11] Chen, S.; Tolke, J.; Geller, S.; Krafczyk, M.: Lattice Boltzmann model for incompressible axisymmetric flows, Phys. rev. E 78, 046703 (2008)
[12] Chai, Z. H.; Shi, B. C.: A novel lattice Boltzmann model for the Poisson equation, Appl. math. Modell. 32, 2050-2058 (2008) · Zbl 1145.82344
[13] Guo, Z. L.; Han, H. F.; Shi, B. C.; Zheng, C. G.: Theory of lattice – Boltzmann equation: lattice – Boltzmann model for axisymmetric flows, Phys. rev. E 79, 046708 (2009)
[14] Peng, Y.; Shu, C.; Chew, Y. T.; Qiu, J.: Numerical investigation of flows in czochralski crystal growth by an axisymmetric lattice Boltzmann method, J. comput. Phys. 186, 295-307 (2003) · Zbl 1072.76624
[15] Huang, H.; Lee, T. S.; Shu, C.: Lattice Boltzmann simulation of gas slip flow in long microtubes, Int. J. Numer. methods fluids 53, 1707-1726 (2007) · Zbl 1370.76145
[16] Chen, S.; Tolke, J.; Krafczyk, M.: Simulation of buoyancy-driven flows in a vertical cylinder using a simple lattice Boltzmann model, Phys. rev. E 79, 016704 (2009)
[17] Li, Q.; He, Y. L.; Tang, G. H.; Tao, W. Q.: Lattice Boltzmann model for axisymmetric thermal flows, Phys. rev. E 80, 037702 (2009)
[18] Zheng, L.; Guo, Z. L.; Shi, B. C.; Zheng, C. G.: Lattice Boltzmann equation for axisymmetric thermal flows, Comput. fluids 39, 945-952 (2010) · Zbl 1242.76284
[19] Hsu, C. T.; Cheng, P.: Thermal dispersion in a porous medium, Int. J. Heat mass transfer 33, 1587-1597 (1990) · Zbl 0703.76079
[20] Ergum, S.: Fluid flow through packed columns, Chem. eng. Prog. 48, 89-94 (1952)
[21] Vafai, K.: Convective flow and heat transfer in variable porosity media, J. fluid mech. 147, 233-259 (1984) · Zbl 0578.76099
[22] He, X.; Zou, Q.; Luo, L. S.; Dembo, M.: Analytic solutions and analysis on non-slip boundary condition for the lattice Boltzmann BGK model, J. stat. Phys. 87, 115-136 (1997) · Zbl 0937.82043
[23] Chen, S.; Martinez, D.; Mei, R.: On boundary conditions in lattice Boltzmann methods, Phys. fluids 8, 2527-2536 (1996) · Zbl 1027.76630
[24] Bouzidi, M.; Firdaouss, M.; Lallemand, P.: Momentum transfer of a lattice Boltzmann fluid with boundaries, Phys. fluids 13, 3452-3459 (2002) · Zbl 1184.76068
[25] Ginzburg, I.; Dhumieres, D.: Multireflection boundary conditions for lattice Boltzmann models, Phys. rev. E 68, 066614 (2003)
[26] Noble, D. R.; Chen, S.; Georgiadis, J. G.; Buckius, R. O.: A consistent hydrodynamic boundary condition for the lattice Boltzmann method, Phys. fluids 7, 203-209 (1995) · Zbl 0846.76086
[27] Inamuro, T.; Yoshino, M.; Ogino, F.: A non-slip boundary condition for lattice Boltzmann simulation, Phys. fluids 7, 2928-2930 (1995) · Zbl 1027.76631
[28] Zou, Q.; He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. fluids 9, 1591-1598 (1997) · Zbl 1185.76873
[29] Guo, Z. L.; Zheng, C. G.; Shi, B. C.: An extrapolation method for boundary condition in lattice Boltzmann method, Phys. fluids 14, 2007-2010 (2002) · Zbl 1185.76156
[30] Seki, N.; Fukusako, S.; Inaba, H.: Heat transfer in a confined rectangular cavity packed with porous media, Int. J. Heat mass transfer 21, 985-989 (1978)
[31] Rajamani, R.; Srinivas, C.; Nithiarasu, P.; Seetharamu, K. N.: Convective heat transfer in axisymmetric porous bodies, Int. J. Numer. methods heat fluid flow 5, 829-837 (1995) · Zbl 0860.76086
[32] Jha, B. K.: Free-convection flow through an annular porous medium, Heat mass transfer 41, 675-679 (2005)
[33] Neumann, G.: Three-dimensional numerical simulation of buoyancy-driven convection in vertical cylinders heated from bellow, J. fluid mech. 214, 559-578 (1990) · Zbl 0698.76090
[34] Liang, S. F.; Vidal, A.; Acrivos, A.: Buoyancy-driven convection in cylindrical geometries, J. fluid mech. 36, 239-256 (1969) · Zbl 0193.27002
[35] Lemembre, A.; Petit, J. P.: Laminar natural convection in a laterally heated and upper cooled vertical cylindrical enclosure, Int. J. Heat mass transfer 41, 2437-2454 (1998) · Zbl 0953.76588
[36] Havstad, M. A.; Burns, E. J.: Convective heat transfer in vertical cylindrical annuli filled with a porous medium, Int. J. Heat mass transfer 25, 1755-1766 (1982)
[37] Hickox, C. E.; Gartling, D. K.: A numerical study of natural convection in a vertical, annular, porous layer, Int. J. Heat mass transfer 28, 720-723 (1985) · Zbl 0575.76089
[38] Prasad, V.; Kulacki, F. A.: Natural convection in a vertical porous annulus, Int. J. Heat mass transfer 27, 207-219 (1984) · Zbl 0533.76089
[39] Marpu, D. R.: Manipal, Forchheimer and Brinkman extended Darcy flow model on natural convection in a vertical cylindrical porous annulus, Acta mech. 109, 41-48 (1995) · Zbl 0866.76087
[40] Prasad, V.; Kulacki, E. A.; Keyhani, M.: Natural convection in porous media, J. fluid mech. 150, 89-119 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.