zbMATH — the first resource for mathematics

Flow visualization of superbursts and of the log-layer in a DNS at \(Re_{\tau} = 950\). (English) Zbl 1201.76092
Summary: This paper uses direct numerical simulations (DNS) of turbulent flow in a channel at \(Re_{\tau} = 950\) [J. C. del Álamo, J. Jiménez, P. Zandonade and R. D. Moser, J. Fluid Mech. 500, 135-144 (2004; Zbl 1059.76031)] to provide a picture of the turbulent structures making large contributions to the Reynolds shear stress. Considerable work of this type has been done for the viscous wall region at smaller \(Re _{\tau }\), for which a log-layer does not exist. Recent PIV measurements of turbulent velocity fluctuations in a plane parallel to the direction of flow have emphasized the dominant contribution of large scale structures in the outer flow. This prompted T. J. Hanratty and D. V. Papavassiliou [In Panton, R.L. (ed), Self-sustaining Mechanism of Wall Turbulence. Computational Mechanics Publications, Southampton, 83–108 (1997)] to use DNS at \(Re_{\tau } = 150,300\) to examine these structures in a plane perpendicular to the direction of flow. They identified plumes which extend from the wall to the center of a channel. The data at \(Re_{\tau } = 950\) are used to explore these results further, to examine the structure of the log-layer, and to test present notions about the viscous wall layer.

76F65 Direct numerical and large eddy simulation of turbulence
76M27 Visualization algorithms applied to problems in fluid mechanics
Full Text: DOI
[1] Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex origination in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000) · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[2] Del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004). http://torroja.dmt.upm.es/ftp/channels/data · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[3] Del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329–358 (2006) · Zbl 1157.76346 · doi:10.1017/S0022112006000814
[4] Antonia, R.A., Kim, J.: Low Reynolds number effects on near-wall turbulence. J. Fluid Mech. 276, 61–80 (1994) · doi:10.1017/S0022112094002466
[5] Balasubramanian, B.J.: Nature of turbulence in wall-bounded flows. Ph.D. thesis (University of Illinois, Urbana, 2005)
[6] Bernard, P.S., Thomas, J.M., Handler, R.A.: Vortex dimensions and the production of Reynolds stress. J. Fluid Mech. 253, 385–419 (1993) · Zbl 0800.76185 · doi:10.1017/S0022112093001843
[7] Bernard, P.S., Wallace, J.M.: Turbulent Flow. Wiley, Hoboken, New Jersey (2002)
[8] Brooke, J.W., Hanratty, T.J.: Origin of turbulence-producing eddies in a channel flow. Phys. Fluids A 5, 1011–1022 (1993) · Zbl 0800.76195 · doi:10.1063/1.858666
[9] Bullock, K.J., Cooper, R.E., Abernathy, F.H.: Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow. J. Fluid Mech. 88, 585–608 (1978) · doi:10.1017/S0022112078002293
[10] Chapman, D.R., Kuhn, G.D.: Two-component Navier Stokes computational model of viscous sublayer turbulence. AIAA Pap. 81–1024 (1981)
[11] Finnicum, D.S., Hanratty, T.J.: Effect of favorable pressure gradients on turbulent boundary layers. AIChE J. 34, 529–540 (1988) · doi:10.1002/aic.690340402
[12] Ganapathisubrfamani, B., Longmire, E.K., Marusic, I.: Characteristics of vortex packets in turbulent boundary-layers. J. Fluid Mech. 478, 35–46 (2003) · Zbl 1032.76500
[13] Guezennec, Y.G., Piomelli, U., Kim, J.: Conditionally-averaged structures in wall-bounded turbulent flows. In: Studying turbulence using numerical simulation databases. Proc. of the 1987 summer program. Center for Turbulence Research, NASA Ames Research Center, CTR-S87, pp. 263–272 (1987)
[14] Hanratty, T.J.: A conceptual model of the viscous wall region. In: Kline, S.J., Afgan, N.H. (eds.)Near-Wall Turbulence. (Hemisphere, 1988), pp. 81–103
[15] Hanratty, T.J., Papavassiliou, D.V.: The role of wall vortices in producing turbulence. In: Panton, R.L. (ed.) Self-sustaining Mechanism of Wall Turbulence. Computational Mechanics Publications, pp. 83–108 (1997)
[16] Heist, D.K., Hanratty, T.J., Na, Y.: Observation of streamwise vortices by rotation of arch vortices. Phys. Fluids A 12, 2965–2975 (2000) · Zbl 1184.76215 · doi:10.1063/1.1311969
[17] Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to \( \operatorname{Re} _{\tau } = 2003 \) . Phys. Fluids 18, 011702 (2006) · doi:10.1063/1.2162185
[18] Hutchins, N., Ganapathsubramani, B., Marusic, I.: Spanwise periodicity and the existence of very large scale coherence in turbulent boundary layers. In: Proc. Fourth International Symposium on Turbulence and Shear Flow Phenomena, vol. 1. Williamsburg, 27–29 June 2005, pp. 39–44
[19] Iwamoto, K., Fukagata, K., Kasagi, N., Suzuki, Y.: DNS of turbulent channel flow at \( \operatorname{Re} _{\tau } = 1160 \) and evaluation of feedback control at practical Reynolds numbers. In: Proc. Fifth Symp. Smart Control of Turbulence. Tokyo, 29 February–2 March 2004, pp. 119–125
[20] Iwamoto, K., Kasagi, N., Suzuki, Y.: Direct numerical simulation of turbulent channel flow at \( \operatorname{Re} _{\tau } = 2320 \) . In: Proc. Sixth Symp. Smart Control of Turbulence, Tokyo, 6–9 March 2005
[21] Kasagi, N., Tomita, Y., Kuroda, A.: Direct numerical simulation of passive scalar field in a turbulent channel flow. Trans. ASME J: J. Heat Transfer 114, 598–606 (1992) · doi:10.1115/1.2911323
[22] Kim, J., Moin, P., Moser, R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987) · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[23] Kim, K.C., Adrian, R.: Very large scale motions in the outer-layer. Phys. Fluids 11, 417–422 (1999) · Zbl 1147.76430 · doi:10.1063/1.869889
[24] Liu, Z.C., Adrian, R.J., Hanratty, T.J.: Study of turbulent channel flow at moderate Reynolds numbers with particle-image velocimetry and proper orthogonal decomposition. In: 7th International Symp. on Appl. of Laser Techn. to Fluid Mech., Lisbon, Portugal, 11–14 July 1994
[25] Liu, Z.C., Adrian, R.J., Hanratty, T.J.: A study of streaky structure in a turbulent channel flow with particle image velocimetry. In: 8th International Symp. on Appl. of Laser Techn. to Fluid Mech., Lisbon, Portugal, 8–11 July 1996
[26] Liu, Z.C., Adrian, R.J., Hanratty, T.J.: Large scale models of turbulent channel flow: transport and structures. Tech. Rep. 929, Theoretical and Applied Mechanics, University of Illinois, Urbana-Champaign (2000) (see also J. Fluid Mech. 448, 53–80) · Zbl 1102.76314
[27] Lyons, S.L., Nikolaides, C., Hanratty, T.J.: The size of turbulent eddies close to a wall. AIChE J. 34, 938–945 (1988) · doi:10.1002/aic.690340606
[28] Lyons, S.L.: A direct numerical simulation of fully developed turbulent channel flow with passive heat transfer. Ph.D. thesis, University of Illinois, Urbana (1989)
[29] Lyons, S.L., Hanratty, T.J., McLaughlin, J.B.: Turbulence-producing eddies in the viscous wall region. AIChE J. 35, 1962–1974 (1989) · doi:10.1002/aic.690351207
[30] Lyons, S.L., Hanratty, T.J., McLaughlin, J.B.: Large-scale computer simulation of fully developed channel flow with heat transfer. Int. J. Num. Methods Fluids 13, 999–1028 (1991) · Zbl 0741.76060 · doi:10.1002/fld.1650130805
[31] Marusic, I.: On the role of large scale wall in wall turbulence. Phys. Fluids 13, 735–743 (2001) · Zbl 1184.76351 · doi:10.1063/1.1343480
[32] Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \( \operatorname{Re} _{\tau } = 590 \) . Phys. Fluids A 11, 943–945 (1999) · Zbl 1147.76463 · doi:10.1063/1.869966
[33] Na, Y., Hanratty, T.J., Liu, Z.C.: The use of DNS to defined stress producing events for turbulent flow over a smooth wall. Flow Turbul. Combust. 66, 495–512 (2001) · Zbl 0993.76038 · doi:10.1023/A:1013562531776
[34] Nakagawa, S., Hanratty, T.J.: Particle image velocimetry measurements of flow over a wavy wall. Phys. Fluids 13, 3504–3507 (2001) · Zbl 1184.76389 · doi:10.1063/1.1399291
[35] Nakagawa, S., Na, Y., Hanratty, T.J.: Influence of a wavy boundary on turbulence. I. Highly rough surface. Exp. Fluids 35, 422–436 (2003) · doi:10.1007/s00348-003-0681-2
[36] Nakagawa, S., Hanratty, T.J.: Influence of a wavy boundary on turbulence. II. Intermediate roughened and hydraulically smooth surfaces. Exp. Fluids 35, 437–447 (2003) · doi:10.1007/s00348-003-0682-1
[37] Nikolaides, C.: A study of the coherent structures in the viscous wall region of a turbulent flow. Ph.D. thesis, University of Illinois, Urbana (1984)
[38] Papavassiliou, D.V.: Structure and transport in wall turbulence. Ph.D. thesis, University of Illinois, Urbana (1996)
[39] Robinson, S.K., Kline, S.J., Spalart, P.R.: Quasi-coherent structures in the turbulent boundary-layer: Part II Verification and new information from a numerically simulated flat-plate layer. In: Zoran, P.Z. (ed.) International Seminar on Near-Wall Turbulence. Dubrovnik, Yugoslavia, May 1988
[40] Tomkins, C.D., Adrian, R.J.: Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 37–74 (2003) · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[41] Townsend, A.A.: The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press, Cambridge (1976) · Zbl 0325.76063
[42] Vlachogiannis, M., Hanratty, T.J.: Influence of wavy structured surfaces and large scale polymer structures on drag reduction. Exp. Fluids 36, 685–700 (2004) · doi:10.1007/s00348-003-0745-3
[43] Zhou, J., Meinhart, C.D., Balachandar, S., Adrian, R.J.: Formation of coherent hairpin packets in wall turbulence. In: Panton, R.L. (ed.) Self-sustaining Mechanism of Wall Turbulence. Computational Mechanics Publications, pp. 109–134 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.