×

zbMATH — the first resource for mathematics

A review about invariance induced gravity: gravity and spin from local conformal-affine symmetry. (English) Zbl 1200.83042
Summary: In this review paper, we discuss how gravity and spin can be obtained as the realization of the local Conformal-Affine group of symmetry transformations. In particular, we show how gravitation is a gauge theory which can be obtained starting from some local invariance as the Poincaré local symmetry. We review previous results where the inhomogeneous connection coefficients, transforming under the Lorentz group, give rise to gravitational gauge potentials which can be used to define covariant derivatives accommodating minimal couplings of matter, gauge fields (and then spin connections). After we show, in a self-contained approach, how the tetrads and the Lorentz group can be used to induce the spacetime metric and then the Invariance Induced Gravity can be directly obtained both in holonomic and anholonomic pictures. Besides, we show how tensor valued connection forms act as auxiliary dynamical fields associated with the dilation, special conformal and deformation (shear) degrees of freedom, inherent to the bundle manifold. As a result, this allows to determine the bundle curvature of the theory and then to construct boundary topological invariants which give rise to a prototype (source free) gravitational Lagrangian. Finally, the Bianchi identities, the covariant field equations and the gauge currents are obtained determining completely the dynamics.

MSC:
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C35 Gravitational waves
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Utiyama, R.: Phys. Rev. 101, 1597 (1956) · Zbl 0070.22102
[2] Yang, C.N., Mills, R.L.: Phys. Rev. 96, 191 (1954) · Zbl 1378.81075
[3] Kibble, T.W.: J. Math. Phys. 2, 212 (1960) · Zbl 0095.22903
[4] Cartan, E.: Ann. Ec. Norm. 42, 17 (1925)
[5] Sciama, D.W.: On the analog between charge and spin in General Relativity. In: Recent Developments in General Relativity, Festschrift for Leopold Infeld, p. 415. Pergamon, New York (1962)
[6] Finkelstein, R.: Ann. Phys. 12, 200 (1961) · Zbl 0096.43206
[7] Hehl, F.W., Datta, B.K.: J. Math. Phys. 12, 1334 (1971)
[8] Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 393 (1976) · Zbl 1371.83017
[9] Mansouri, F., Chang, L.N.: Phys. Rev. D 13, 3192 (1976)
[10] Mansouri, F.: Phys. Rev. Lett. 42, 1021 (1979)
[11] Grignani, G., Nardelli, G.: Phys. Rev. D 45, 2719 (1992) · Zbl 1232.83070
[12] Chang, L.N., Macrae, K.I., Mansouri, F.: Phys. Rev. D 13, 235 (1976)
[13] Hehl, F.W., McCrea, J.D.: Found. Phys. 16, 267 (1986)
[14] Capozziello, S., Cianci, R., Stornaiolo, C., Vignolo, S.: Class. Quantum Gravity 24, 6417 (2007) · Zbl 1197.83087
[15] Capozziello, S., Cianci, R., Stornaiolo, C., Vignolo, S.: Int. J. Geom. Methods Mod. Phys. 5, 765 (2008) · Zbl 1157.83343
[16] Magnano, G., Ferraris, M., Francaviglia, M.: Class. Quantum Gravity 7, 557 (1990) · Zbl 0697.53065
[17] Inomata, A., Trikala, M.: Phys. Rev. D 19, 1665 (1978)
[18] Callan, C.G., Coleman, S., Wess, J., Zumino, B.: Phys. Rev. 117, 2247 (1969)
[19] Coleman, S., Wess, J., Zumino, B.: Phys. Rev. 117, 2239 (1969)
[20] Isham, C.J., Salam, A., Strathdee, J.: Ann. Phys. 62, 98 (1971) · Zbl 0209.58701
[21] Salam, A., Strathdee, J.: Phys. Rev. 184, 1750 (1969)
[22] Salam, A., Strathdee, J.: Phys. Rev. 184, 1760 (1969)
[23] Borisov, A.B., Ogievetskii, V.I.: Theor. Mat. Fiz. 21, 329 (1974)
[24] Ivanov, E.A., Ogievetskii, V.I.: Gauge theories as theories of spontaneous breakdown. Preprint of the Joint Institute of Nuclear Research, E2-9822, pp. 3–10 (1976)
[25] Chang, L.N., et al.: Phys. Rev. D 17, 3168 (1978)
[26] Stelle, K.S., et al.: Phys. Rev. D 21, 1466 (1980)
[27] Ivanov, E.A., Niederle, J.: Phys. Rev. D 25, 976 (1982) · Zbl 1370.83094
[28] Ivanov, E.A., Niederle, J.: Phys. Rev. D 25, 988 (1982) · Zbl 1370.83093
[29] Ivanenko, D., Sardanashvily, G.A.: Phys. Rep. 94, 1 (1983)
[30] Capozziello, S., De Laurentis, M.: Int. J. Geom. Methods Mod. Phys. 6, 1 (2009) · Zbl 1166.83013
[31] Basini, G., Capozziello, S.: Gen. Relativ. Gravit. 35, 2217 (2003) · Zbl 1045.83056
[32] Basini, G., Capozziello, S.: Int. J. Mod. Phys. D 15, 583 (2006) · Zbl 1101.83034
[33] Lord, A., Goswami, P.: J. Math. Phys. 27, 3051 (1986) · Zbl 0616.53061
[34] Lord, E.A., Goswami, P.: J. Math. Phys. 29, 258 (1987) · Zbl 0642.53096
[35] Ne’eman, Y., Regge, T.: Riv. Nuovo Cimento 1, 1 (1978)
[36] Ne’eman, Y., Sijacki, D.: Gravity from symmetry breakdown of a gauge affine theory. The Center for Particle Theory, University of Texas at Austin, D6-87/40 (1987)
[37] Lopez-Pinto, A., Tiemblo, A., Tresguerres, R.: Class. Quantum Gravity 12, 1503 (1995) · Zbl 0823.53076
[38] Julve, J., et al.: Class. Quantum Gravity 12, 1327 (1995)
[39] Tresguerres, R., Mielke, E.W.: Phys. Rev. D 62, 044004 (2000)
[40] Tresguerres, R.: Phys. Rev. D 66, 064025 (2002)
[41] Capozziello, S., Stornaiolo, C.: Int. J. Geom. Methods Mod. Phys. 5, 185 (2008) · Zbl 1157.83317
[42] Tiemblo, A., Tresguerres, R.: Gravitational contribution to fermion masses. Eur. Phys. J. C 42, 437 (2005). arXiv: gr-qc/0506034
[43] Tiemblo, A., Tresguerres, R.: Recent Res. Dev. Phys. 5, 1255 (2004)
[44] Schwarz, A.: Topology for Physicists. Springer-Verlag, Berlin/Heidelberg (1994) · Zbl 0858.55001
[45] Nakahara, M.: Geometry, Topology and Physics. Graduate Student Series in Physics, 2nd edn. Institute of Physics, Bristol (2003) · Zbl 1090.53001
[46] Tiemblo, A., Tresguerres, R.: Time evolution in dynamical spacetimes. arXiv: gr-qc/9607066 · Zbl 0965.83031
[47] Giachetta, G.: J. Math. Phys. 40, 939 (1999) · Zbl 0946.83047
[48] Cacciatori, S.L., Caldarelli, M.M., Giacomini, A., Klemm, D., Mansi, D.S.: J. Geom. Phys. 56, 2523 (2006) · Zbl 1109.83007
[49] Tresguerres, R.: J. Math. Phys. 33, 4231 (1992) · Zbl 0767.53063
[50] Scipioni, R.: Class. Quantum Gravity 16, 2471 (1999) · Zbl 0942.83054
[51] Seiberg, N.: Emergent Spacetime, Rapporteur talk at the 23rd Solvay Conference in Physics, December, 2005. arXiv: hep-th/0601234
[52] Capozziello, S., Lambiase, G., Stornaiolo, C.: Ann. Phys. (Leipzig) 10, 713 (2001) · Zbl 0974.83035
[53] Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) · Zbl 1112.83047
[54] Capozziello, S., Francaviglia, M.: Gen. Relativ. Gravit. 40, 357 (2008) · Zbl 1137.83302
[55] Sotiriou, T.P., Faraoni, V.: Phys. Rep. (2009, in press). arXiv: 0805.1726 [gr-qc]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.