×

Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields. (English) Zbl 1200.78001

J. Phys. A, Math. Theor. 43, No. 38, Article ID 385203, 9 p. (2010); corrigendum ibid. 51, No. 1, Article ID 019501, 1 p. (2018).

MSC:

78A10 Physical optics
78A40 Waves and radiation in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Nye J F and Berry M V 1974 Dislocations in wave trains Proc. R. Soc. A 336 165
[2] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes Phys. Rev. A 45 8185
[3] Nye J F and Hajnal J V 1987 The wave structure of monochromatic electromagnetic radiation Proc. R. Soc. A 409 21
[4] Berry M V and Dennis M R 2001 Knotted and linked phase singularities in monochromatic waves Proc. R. Soc. A 457 2251-63
[5] Leach J, Dennis M R, Courtial J and Padgett M J 2004 Laser beams: knotted threads of darkness Nature432 165
[6] Dennis M R 2009 On the burgers vector of a wave dislocation J. Opt. A 11 094002
[7] Dennis M R, King R P, Jack B, O’holleran K and Padgett M 2010 Isolated optical vortex knots Nat. Phys.6 118-21
[8] Irvine W T M and Bouwmeester D 2008 Linked and knotted beams of light Nat. Phys.4 817
[9] Rañada A F 1989 A topological theory of the electromagnetic field Lett. Math. Phys.18 97
[10] Rañada A F and Trueba J L 1995 Electromagnetic knots Phys. Lett. A 202 337-42
[11] Rañada A F 1992 Topological electromagnetism J. Phys. A: Math. Gen.25 1621
[12] Rañada A F 1990 Knotted solutions of the Maxwell equations in vacuum J. Phys. A: Math. Gen.23 L815
[13] Besieris I and Shaarawi A 2009 Hopf-Rañada linked and knotted light beam solution viewed as a null electromagnetic field Opt. Lett.34 3887
[14] Robinson I 1961 Null electromagnetic fields J. Math. Phys.2 290
[15] Trautman A 1977 Solutions of the Maxwell and Yang-Mills equations associated with Hopf fibrings Int. J. Theor. Phys.16 561
[16] Bialynicki-Birula I 2004 Electromagnetic vortex lines riding atop null solutions of the Maxwell equations J. Opt. A 6 S181
[17] Urbantke H K 2003 The Hopf fibration - seven times in physics J. Geom. Phys.46 125
[18] Lyons D W 2003 An Elementary Introduction to the Hopf fibration Math. Mag.76 8798
[19] Newcomb W 1958 Motion of magnetic lines of force Ann. Phys.3 347
[20] Penrose R 1966 Twistor algebra J. Math. Phys.8 345
[21] Bampi F 1978 The shear-free condition in Robinson’s theorem Gen. Rel. Grav.9 779
[22] Moffatt H K 1969 Degree of knottedness of tangled vortex lines J. Fluid Mech.35 117
[23] Berger M A 1999 Introduction to magnetic helicity Plasma Phys. Control. Fusion41 B167
[24] Rolfsen D 2003 Knots and Links (Boston, MA: Publish or Perish)
[25] Baez J C and Muniain J P 1994 Gauge Fields, Knots and Gravity (Singapore: World Scientific)
[26] Chandrasekhar S and Kendall P C 1957 On force-free magnetic fields Astrophys. J.126 457
[27] Bialynicki-Birula I and Bialynicka-Birula Z 2006 Beams of electromagnetic radiation carrying angular momentum: the Riemann-Silberstein vector and the classical-quantum correspondence Opt. Commun.264 342-51
[28] Deser S and Teitelboim C 1976 Duality transformations of Abelian and non-Abelian gauge fields Phys. Rev. D 13 1592-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.