×

zbMATH — the first resource for mathematics

Mass modified outlet boundary for a fully developed flow in the lattice Boltzmann equation. (English) Zbl 1200.76151

MSC:
76M28 Particle methods and lattice-gas methods
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1146/annurev.fluid.30.1.329 · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[2] DOI: 10.1016/0370-1573(92)90090-M · doi:10.1016/0370-1573(92)90090-M
[3] DOI: 10.1007/b72010 · Zbl 0999.82054 · doi:10.1007/b72010
[4] DOI: 10.1103/PhysRevLett.61.2332 · doi:10.1103/PhysRevLett.61.2332
[5] DOI: 10.1209/0295-5075/9/4/008 · doi:10.1209/0295-5075/9/4/008
[6] DOI: 10.1023/B:JOSS.0000015179.12689.e4 · Zbl 0939.82042 · doi:10.1023/B:JOSS.0000015179.12689.e4
[7] DOI: 10.1209/0295-5075/10/5/008 · doi:10.1209/0295-5075/10/5/008
[8] DOI: 10.1063/1.857793 · doi:10.1063/1.857793
[9] DOI: 10.1103/PhysRevA.43.4320 · doi:10.1103/PhysRevA.43.4320
[10] DOI: 10.1063/1.858769 · Zbl 0797.76095 · doi:10.1063/1.858769
[11] DOI: 10.1016/0167-2789(91)90295-K · Zbl 0717.76100 · doi:10.1016/0167-2789(91)90295-K
[12] DOI: 10.1007/BF01049965 · Zbl 0943.82552 · doi:10.1007/BF01049965
[13] Ginzbourg I., J. Phys. II 4 pp 191–
[14] DOI: 10.1016/0045-7930(94)00037-Y · Zbl 0845.76086 · doi:10.1016/0045-7930(94)00037-Y
[15] DOI: 10.1103/PhysRevE.48.4823 · doi:10.1103/PhysRevE.48.4823
[16] DOI: 10.1063/1.868767 · Zbl 0846.76086 · doi:10.1063/1.868767
[17] DOI: 10.1063/1.868766 · Zbl 1027.76631 · doi:10.1063/1.868766
[18] DOI: 10.1063/1.868961 · Zbl 1027.76632 · doi:10.1063/1.868961
[19] DOI: 10.1063/1.869307 · Zbl 1185.76873 · doi:10.1063/1.869307
[20] Succi S., Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001) · Zbl 0990.76001
[21] DOI: 10.1063/1.869035 · Zbl 1027.76630 · doi:10.1063/1.869035
[22] Yu D., Progress Comput. Fluid Dyn. 5 pp 103–
[23] DOI: 10.1016/0017-9310(93)80033-Q · Zbl 0775.76035 · doi:10.1016/0017-9310(93)80033-Q
[24] Morgan K., Notes on Numerical Fluid Mechanics 9 (1984)
[25] Sparrow E. M., Numer. Heat Transfer 12 pp 19–
[26] DOI: 10.1080/10407790190053987 · doi:10.1080/10407790190053987
[27] Tang G. H., Int. J. Mod. Phys. C
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.