×

On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential. (English) Zbl 1200.35196


MSC:

35P05 General topics in linear spectral theory for PDEs
35B10 Periodic solutions to PDEs
35P20 Asymptotic distributions of eigenvalues in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] [B 1] M. Sh. Birman,On the spectrum of singular boundary-value problems Mat. Sb.55 (1961), 125–174 (Russian); English transl.: Amer. Math. Soc. Transl.53 (1966), 23–80.
[2] [B 2] M. Sh. Birman,Discret spectrum in the gaps of a continuous one for perturbations with large coupling constant, Adv. Soviet Math.7 (1991), 57–73. · Zbl 0754.35025
[3] [B 3] M. Sh. Birman,Discrete spectrum in the gaps of the perturbed periodic Schrödinger operator. II. Non-regular perturbations, Algebra i Analiz9, no. 6 (1997), 62–89 (Russian); English transl.: St. Petersburg Math. J.9 (1998), 1073–1095. · Zbl 0911.35082
[4] [BBor] M. Sh. Birman and V. Borzov,On the asymptotics of the discrete spectrum for certain singular differential operators, Probl. Math. Fiz.5 (1971), 24–38 (Russian); English transl.: Topics Math. Phys.5 (1972), 19–30.
[5] [BLap 1] M. Sh. Birman and A. Laptev,Discrete spectrum of the perturbed Dirac operator, Ark. Mat.32 (1994), 13–32. · Zbl 0822.35104
[6] [BLap 2] M. Sh. Birman and A. Laptev,The negative discrete spectrum of a two-dimensional Schrödinger operator, Comm. Pure Appl. Math.49 (1996), 967–997. · Zbl 0864.35080
[7] [BLapSol] M. Sh. Birman, A. Laptev and M. Solomyak,On the eigenvalue behaviour for a class of differential operators on the semiaxis, Math. Nachr.195 (1998), 17–46. · Zbl 0916.34067
[8] [BlapSus] M. Sh. Birman, A. Laptev and T. A. Suslina,Discrete spectrum of a two dimensional periodic elliptic second order operator perturbed by a decreasing potential. I. Semibounded gap, Algebra i Analiz12 (2000), 38–82 (Russian); English transl.: St. Petersburg Math. J.12 (2001), in press.
[9] [BSol 1] M. Sh. Birman and M. Z. Solomyak,Estimates for the singular numbers of integral operators, Uspehi Mat. Nauk32 (1977), 17–84 (Russian); English transl.: Russian Math. Surveys32 (1977), 15–89.
[10] [BSol 2] M. Sh. Birman and M. Z. Solomyak,Quantitive analysis in Sobolev imbedding theorems and applications to spectral theory; Tenth Math. School, Izd. Inst. Mat. Akad. Nauk Ukrain. SSSR, Kiev, 1974, pp. 5–189 (Russian); English transl.: Amer. Math. Soc. Transl. Ser. 2114 (1980).
[11] [BSol 3] M. Sh. Birman and M. Z. Solomyak,Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publishing Co, Dordrecht, 1987.
[12] [BSol 4] M. Sh. Birman and M. Z. Solomyak,Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, Adv. Soviet Math.7 (1991), 1–55.
[13] [BSol 5] M. Sh. Birman and M. Z. Solomyak,Schrödinger operator. Estimates for number of bound states as function-theoretical problem. Amer. Math. Soc. Transl. Ser. 2150 (1992), 1–54. · Zbl 0756.35057
[14] [BSus] M. Sh. Birman and T. A. Suslina,Discrete spectrum of the twodimensional periodic elliptic second order operator perturbed by a decreasing potential. II. Internal gaps (in prepration).
[15] [GilTr] D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order, second edition, Springer, Berlin, 1983. · Zbl 0562.35001
[16] [GoKr] I. C. Gohberg and M. G. Krein,Introduction to the Theory of Linear Nonselfadjoint Operators, Nauka, Moscow, 1965 (Russian); English transl.: Amer. Math. Soc., Providence, RI, 1969.
[17] [H] M. Hirsch,Differential Topology, Springer, New York, 1976.
[18] [Iv] V. Ivrii,Accurate spectral asympotics for periodic operators, Journees ”Equations aux derivees partielles”, Saint-Jean-de-Monts, 1999, pp. 1–11.
[19] [JMSim] V. Jakšić, S. Molčanov and B. Simon,Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps, J. Funct. Anal.106 (1992), 59–79. · Zbl 0783.35040
[20] [K] T. Kato,Perturbation Theory for Linear Operators, Springer, Berlin, 1966. · Zbl 0148.12601
[21] [Kuch] P. Kuchment,Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993. · Zbl 0789.35002
[22] [LadUr] O. A. Ladyzhenskaya and N. N. Uraltseva,Linear and Quasilinear Equations of Elliptic Type, 2nd ed., revised, ”Nauka”, Moscow, 1973 (Russian); English transl. of 1st ed.: Academic Press, New York-London, 1968.
[23] [NSol] K. Naimark and M. Solomyak,Regular and pathological eigenvalue behavior for the equation-{\(\gamma\)}u”=V u on the semiaxis, J. Funct. Anal.151 (1997), 504–530. · Zbl 0895.34063
[24] [RSim] M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 4, Academic Press, New York-San Francisco-London, 1978. · Zbl 0401.47001
[25] [Sen] E. Seneta,Regularly Varying Functions, Lecture Notes in Mathematics, Vol. 508, Springer, Berlin-New York, 1976. · Zbl 0324.26002
[26] [Sim] B. Simon,Trace Ideals and Their Applications, Cambridge Univ. Press, Cambridge, 1979. · Zbl 0423.47001
[27] [Skr] M. Skriganov,Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov171 (1985), 3–122 (Russian); English transl.: Proc. Steklov Inst. Math.2 (1987).
[28] [Sol 1] M. Solomyak,Piecewise-polynomial approximation of functions from H l((0,1)d),2l=d), and applications to the spectral theory of Schrödinger operator, Israel J. Math.86 (1994), 253–276. · Zbl 0803.47045
[29] [Sol 2] M. Solomyak,On the negative discrete spectrum of the operator -{\(\Delta\)} N -{\(\alpha\)}V for a class of unbounded domains inR d, Centre de Recherches Mathématiques, CRM Proceedings and Lecture Notes, Vol. 12, 1997, pp. 283–296.
[30] [W] T. Weidl,General operator ideals of the weak type, Algebra i Analiz4 (1992), 117–144 (Russian); English transl.: St. Petersburg Math. J.4 (1993), 503–525.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.