×

On some properties of the gamma function. (English) Zbl 1200.33002

Summary: We prove a complete monotonicity theorem and establish some upper and lower bounds for the gamma function in terms of digamma and polygamma functions.

MSC:

33B15 Gamma, beta and polygamma functions
26D07 Inequalities involving other types of functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1965), Dover: Dover New York
[2] Alzer, H.; Batir, N., Monotonicity properties of the gamma function, Appl. Math. Lett., 20, 778-781 (2007) · Zbl 1135.33300
[3] Alzer, H.; Grinshpan, A. Z., inequalities for the gamma and q-gamma functions, J. Approx. Theory, 144, 67-83 (2007) · Zbl 1108.33001
[4] Alzer, H.; Berg, C., Some classes of completely monotonic functions II, The Ramanujan J., 11, 2, 225-248 (2006) · Zbl 1110.26015
[5] Alzer, H., On Ramanujan’s double inequality for the gamma function, Bull. London Math. Soc., 35, 5, 601-607 (2003) · Zbl 1027.33002
[6] Alzer, H., On some inequalities for the gamma and psi functions, Math. Comp., 66, 217, 373-389 (1997) · Zbl 0854.33001
[7] Anderson, G. D.; Barnard, R. W.; Richards, K. C.; Vamanamurthy, M. K.; Vuorinen, M., Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc., 347, 1713-1723 (1995) · Zbl 0826.33003
[8] G. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999.; G. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999.
[9] Batir, N., An interesting double inequality for Euler’s gamma function, J. Inequal. Pure Appl. Math., 5, 4 (2004), article 97, 3pp · Zbl 1078.33001
[10] Batir, N., Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math., 6, 4 (2005), article 103, 9pp · Zbl 1089.33001
[11] C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Ergebnisse der Mathematic und ihrer Grenzgebiete, vol. 87, Springer, Berlin, 1975.; C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Ergebnisse der Mathematic und ihrer Grenzgebiete, vol. 87, Springer, Berlin, 1975. · Zbl 0308.31001
[12] L. Bondesson, Generalized Gamma Convolution and Related Classes of Distributions and Densities, Lecture Notes in Statistics, vol. 76, Springer, New York, 1992.; L. Bondesson, Generalized Gamma Convolution and Related Classes of Distributions and Densities, Lecture Notes in Statistics, vol. 76, Springer, New York, 1992. · Zbl 0756.60015
[13] Day, W. A., On monotonicities of the relaxation functions of viscoelastic material, Proc. Cambridge Philos. Soc., 67, 503-508 (1970) · Zbl 0202.25302
[14] Elezovic, N.; Giordano, C.; Pecaric, J., The best bounds in Gautschi’s inequality, Math. Inequal. Appl., 3, 239-252 (2000) · Zbl 0947.33001
[15] L. Euler, De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt, in: C. Bohm, G. Faber (Eds.), Opera Omnia (1) vol. 14, B. G. Teubner, Berlin, 1925, pp. 1-24.; L. Euler, De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt, in: C. Bohm, G. Faber (Eds.), Opera Omnia (1) vol. 14, B. G. Teubner, Berlin, 1925, pp. 1-24.
[16] Grinshpan, A. Z.; Ismail, M. E.H., Completely monotonic functions involving the gamma and q-gamma functions, Proc. Amer. Math. Soc., 134, 4, 1153-1160 (2006) · Zbl 1085.33001
[17] W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, Wiley, New York, 1984.; W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, Wiley, New York, 1984. · Zbl 0598.60003
[18] Frenzen, L., Error bounds for asymptotic expansions of the ratio of two gamma functions, SIAM J. Math. Anal., 18, 890-896 (1987) · Zbl 0625.41022
[19] Karatsuba, E. A., On the asymptotic representation of the Euler gamma function by Ramanujan, J. Comp. Appl. Math., 135, 2, 225-240 (2001) · Zbl 0988.33001
[20] Kershaw, D., Some extensions of W. Gautschi’s inequalities for the gamma function, Math. Comp., 41, 607-611 (1983) · Zbl 0536.33002
[21] Kimberling, C. H., A probabilistic interpretation of completely monotonicity, Aequationes Math., 10, 152-164 (1974) · Zbl 0309.60012
[22] F. Qi, A new lower bound in the second Kershaw’s double inequality, J. Comput. Appl. Math. (2007), doi:10.1016/j.cam.2007.03.016; F. Qi, A new lower bound in the second Kershaw’s double inequality, J. Comput. Appl. Math. (2007), doi:10.1016/j.cam.2007.03.016 · Zbl 1142.26020
[23] Qi, F., A class of completely monotonic functions and the best bounds in the second Kershaw’s double inequality, J. Comput. Appl. Math., 206, 2, 1007-1014 (2007) · Zbl 1113.33004
[24] Qui, S. L.; Vuorinen, M., Some properties of the gamma and psi functions with applications, Math. Comp., 74, 250, 723-742 (2005) · Zbl 1060.33006
[25] Srinivasan, G. K., The gamma function: An Eclectic Tour, Amer. Math. Monthly, 114, 4, 297-315 (2007) · Zbl 1173.33001
[26] Widder, D. W., The Laplace Transform (1946), Princeton University Press: Princeton University Press Princeton
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.