×

Langevin representation of Coulomb collisions for bi-Maxwellian plasmas. (English) Zbl 1198.82047

The authors consider a Fokker-Planck description of a weakly collisional plasma for the case in which the scatterers are described by a bi-Maxwellian distribution function. They calculate the Rosenbluth potentials, appearing in drift and diffusion term, for the bi-Maxwellian distribution function, obtaining an explicit expression in terms of triple hypergeometric functions. The equation is used to study proton temperature isotropization and compared with a previous model based on bi-Maxwellian transport coefficients. It is further applied to a situation in which temperature anisotropy is continuously driven from an external force.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Takizuka, T.; Abe, H., A binary collision model for plasma simulation with a particle code, J. Comput. Phys., 25, 205-219 (1977) · Zbl 0403.76091
[2] Nanbu, K., Theory of cumulative small-angle collisions in plasmas, Phys. Rev. E, 55, 4642-4652 (1997)
[3] Dimits, A. M.; Wang, C.; Caflisch, R.; Cohen, B. I.; Huang, Y., Understanding the accuracy of Nanbu’s numerical Coulomb collision operator, J. Comput. Phys., 228, 4881-4892 (2009) · Zbl 1169.82018
[4] Manheimer, W. M.; Lampe, M.; Joyce, G., Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584 (1997) · Zbl 0902.76081
[5] Lemons, D. S.; Winske, D.; Daughton, W.; Albright, B., Small-angle Coulomb collision model for particle-in-cell simulations, J. Comput. Phys., 228, 1391-1403 (2009) · Zbl 1157.76059
[6] P. Hellinger, P. Trávnı´ček, J.C. Kasper, A.J. Lazarus, Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations, Geophys. Res. Lett. 33. doi:10.1029/2006GL025925; P. Hellinger, P. Trávnı´ček, J.C. Kasper, A.J. Lazarus, Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations, Geophys. Res. Lett. 33. doi:10.1029/2006GL025925
[7] Š. Štverák, P. Trávnı´ček, M. Maksimovic, E. Marsch, A. Fazakerley, E.E. Scime, Electron temperature anisotropy constraints in the solar wind, J. Geophys. Res. 113. doi:10.1029/2007JA012733; Š. Štverák, P. Trávnı´ček, M. Maksimovic, E. Marsch, A. Fazakerley, E.E. Scime, Electron temperature anisotropy constraints in the solar wind, J. Geophys. Res. 113. doi:10.1029/2007JA012733
[8] J.C. Kasper, A.J. Lazarus, S.P. Gary, Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation, Phys. Rev. Lett. 101.; J.C. Kasper, A.J. Lazarus, S.P. Gary, Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation, Phys. Rev. Lett. 101.
[9] Hinton, F. L., Simulating Coulomb collisions in a magnetized plasma, Phys. Plasmas, 15, 042501 (2008)
[10] Kogan, V. I., The rate of equalization of the temperatures of charged particles in a plasma, (Leontovich, M. A., Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 1 (1961), Pergamon Press: Pergamon Press New York), 153-161
[11] Hellinger, P.; Trávnı´ček, P. M., On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501 (2009)
[12] Schamel, H.; Hamnén, H.; Düchs, D. F.; Stringer, T. E.; O’Brien, M. R., Nonlinear analysis of Coulomb relaxation of anisotropic distributions, Phys. Fluids B, 1, 76-86 (1989)
[13] L. Matteini, S. Landi, P. Hellinger, F. Pantellini, M. Maksimovic, M. Velli, B.E. Goldstein, E. Marsch, The evolution of the solar wind proton temperature anisotropy from 0.3 to 2 AU, Geophys. Res. Lett. 34. doi:10.1029/2007GL030920; L. Matteini, S. Landi, P. Hellinger, F. Pantellini, M. Maksimovic, M. Velli, B.E. Goldstein, E. Marsch, The evolution of the solar wind proton temperature anisotropy from 0.3 to 2 AU, Geophys. Res. Lett. 34. doi:10.1029/2007GL030920
[14] Matthews, A., Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations, J. Comput. Phys., 112, 102-116 (1994) · Zbl 0801.76057
[15] P. Hellinger, P. Trávnı´ček, Magnetosheath compression: role of characteristic compression time, alpha particle abundances and alpha/proton relative velocity, J. Geophys. Res. 110. doi:10.1029/2004JA010687; P. Hellinger, P. Trávnı´ček, Magnetosheath compression: role of characteristic compression time, alpha particle abundances and alpha/proton relative velocity, J. Geophys. Res. 110. doi:10.1029/2004JA010687
[16] P. Hellinger, P.M. Trávnı´ček, Oblique proton fire hose instability in the expanding solar wind: hybrid simulations, J. Geophys. Res. 113. doi:10.1029/2008JA013416; P. Hellinger, P.M. Trávnı´ček, Oblique proton fire hose instability in the expanding solar wind: hybrid simulations, J. Geophys. Res. 113. doi:10.1029/2008JA013416
[17] L. Matteini, S. Landi, P. Hellinger, M. Velli, Parallel proton fire hose instability in the expanding solar wind: hybrid simulations, J. Geophys. Res. 111. doi:10.1029/2006JA011667; L. Matteini, S. Landi, P. Hellinger, M. Velli, Parallel proton fire hose instability in the expanding solar wind: hybrid simulations, J. Geophys. Res. 111. doi:10.1029/2006JA011667
[18] Shoub, E. C., Failure of the Fokker-Planck approximation to the Boltzmann integral for (1/r) potentials, Phys. Fluids, 30, 1340-1352 (1987) · Zbl 0644.76092
[19] Exton, H., Multiple Hypergeometric Functions and Applications Mathematics & its Applications (1976), Halsted Press: Halsted Press New York
[20] Lebedev, N. N., Special Functions and Their Applications (1965), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Clifs, N.J. · Zbl 0131.07002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.