×

zbMATH — the first resource for mathematics

A linearly conforming radial point interpolation method for solid mechanics problems. (English) Zbl 1198.74120

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s004660050346 · Zbl 0932.76067
[2] DOI: 10.1007/s004660050456 · Zbl 0968.74079
[3] DOI: 10.1002/nme.1620370205 · Zbl 0796.73077
[4] Belytschko T., Comput. Methods Appl. Mech. Eng. 137 pp 3–
[5] Bonet J., Appl. Math. Comput. 126 pp 133–
[6] DOI: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A · Zbl 1011.74081
[7] DOI: 10.1002/nme.338 · Zbl 1098.74732
[8] DOI: 10.1093/mnras/181.3.375 · Zbl 0421.76032
[9] DOI: 10.1016/S0955-7997(96)00033-1
[10] DOI: 10.1002/fld.1650200824 · Zbl 0881.76072
[11] DOI: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X · Zbl 1050.74057
[12] Liu G. R., Meshfree Methods, Moving Beyond the Finite Element Method (2003)
[13] Liu G. R., An Introduction to Meshfree Methods and Their Programming (2005)
[14] Lucy L. B., Astro. J. 88 pp 1013–
[15] Lu Y., Comput. Methods Appl. Mech. Eng. 133 pp 397–
[16] DOI: 10.1016/S0045-7825(96)01090-0 · Zbl 0896.73075
[17] Timoshenko S. P., Theory of Elasticity (1970) · Zbl 0266.73008
[18] DOI: 10.1016/S0045-7825(01)00419-4 · Zbl 1065.74074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.