zbMATH — the first resource for mathematics

Hybrid dynamics of stochastic programs. (English) Zbl 1198.68175
Summary: We provide stochastic Concurrent Constraint Programming (sCCP), a stochastic process algebra based on CCP, with a semantics in terms of hybrid automata. We associate with each sCCP program both a stochastic and a non-deterministic hybrid automaton. Then, we compare such automata with the standard stochastic semantics (given by a Continuous Time Markov Chain) and the one based on ordinary differential equations, obtained by a fluid-flow approximation technique. We discuss in detail two case studies: Repressilator and the Circadian Clock, with particular regard to the robustness exhibited by the different semantic models and to the effect of discreteness in dynamical evolution of such systems.

68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
Full Text: DOI
[1] R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. Pappas, H. Rubin, J. Schug, Hybrid modeling and simulation of biomolecular networks, in: Proceedings of Fourth International Workshop on Hybrid Systems: Computation and Control, in: LNCS, vol. 2034, 2001, pp. 19-32. · Zbl 0993.92010
[2] Alfonsi, A.; Cances, E.; Turinici, G.; Di Ventura, B.; Huisinga, W., Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems, (), 1-13 · Zbl 1070.92019
[3] Antoniotti, M.; Policriti, A.; Ugel, N.; Mishra, B., Model building and model checking for biochemical processes, Cell biochemistry and biophysics, 38, 3, 271-286, (2003)
[4] A. Aziz, V. Singhal, F. Balarin, R. Brayton, A. Sangiovanni-Vincentelli, Verifying continuous time markov chains. in: Proceedings of CAV96, 1996.
[5] Blossey, R.; Cardelli, L.; Phillips, A., Compositionality, stochasticity and cooperativity in dynamic models of gene regulation, HFPS journal, 2, 1, 17-28, (2008)
[6] L. Bortolussi, S. Fonda, A. Policriti, Constraint-based simulation of biological systems described by molecular interaction maps, in: Proceedings of IEEE conference on Bioinformatics and Biomedicine, BIBM 2007, 2007.
[7] M.L. Bujorianu, J. Lygeros, General stochastic hybrid systems: Modeling and optimal control. In Proceedings of 43rd IEEE Conference on Decision and Control, CDC 2004, 2004, pp. 182-187.
[8] M.L. Bujorianu, J. Lygeros, Theoretical foundations of stochastic hybrid systems, in: Proceedings XVI Int. Symp. on Math. Theory of Networks and Systems, MTNS 2004, 2004. · Zbl 1130.93048
[9] L. Bortolussi, Stochastic concurrent constraint programming, in: Proceedings of 4th International Workshop on Quantitative Aspects of Programming Languages, QAPL 2006, in: ENTCS, vol. 164, 2006, pp. 65-80.
[10] L. Bortolussi, A master equation approach to differential approximations of stochastic concurrent constraint programming, in: Proceedings of the Sixth Workshop on Quantitative Aspects of Programming Languages, QAPL 2008, in: ENTCS, vol. 220, 2008, pp. 163-180. · Zbl 1286.68344
[11] L. Bortolussi, A. Policriti, Stochastic concurrent constraint programming and differential equations, in: Proceedings of Fifth Workshop on Quantitative Aspects of Programming Languages, QAPL 2007, in: ENTCS, vol. 167, 2007. · Zbl 1279.92031
[12] Bortolussi, L.; Policriti, A., Hybrid systems and biology: continuous and discrete modeling for systems biology, (), 424-448, Chapter
[13] L. Bortolussi, A. Policriti, Hybrid approximation of stochastic concurrent constraint programming, in: Proceeding of IFAC 2008, 2008. · Zbl 1144.92001
[14] L. Bortolussi, A. Policriti, The importance of being (a little bit) discrete, in: Proceedings of FBTC’08, 2008. · Zbl 1283.92009
[15] Bortolussi, L.; Policriti, A., Modeling biological systems in concurrent constraint programming, Constraints, 13, 1, (2008) · Zbl 1144.92001
[16] Bortolussi, L.; Policriti, A., Hybrid dynamics of stochastic \(\pi\)-calculus, Mathematics in computer science, 2, 3, 465-491, (2009) · Zbl 1205.68238
[17] L. Bortolussi, A. Policriti, Hybrid semantics of stochastic programs with dynamic reconfiguration, in: Proceedings of CompMod, 2009. · Zbl 1268.68059
[18] L. Bortolussi, A. Policriti, Stochastic programs and hybrid automata for (biological) modeling, in: Proceedings of CiE 2009, 2009. · Zbl 1268.68059
[19] Batt, G.; Yordanov, B.; Belta, C.; Weiss, R., Robustness analysis and tuning of synthetic gene networks, Bioinformatics, 23, 18, 2415-2422, (2007)
[20] Calzone, L.; Fages, F.; Soliman, S., Biocham: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, 22, 1805-1807, (2006)
[21] Seattle CompBio Group, Institute for Systems Biology. Dizzy home page.
[22] Calder, M.; Gilmore, S.; Hillston, J., Modelling the influence of rkip on the erk signalling pathway using the stochastic process algebra PEPA, Transactions on computational systems biology, 4230, 1-23, (2006)
[23] Davis, M.H.A., Markov models and optimization, (1993), Chapman & Hall · Zbl 0780.60002
[24] Elowitz, M.B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 403, 335-338, (2000)
[25] Gibson, M.; Bruck, J., Efficient exact simulation of chemical systems with many species and many channels, Journal physical chemistry, 104, 9, 1876-1889, (2000)
[26] Gonze, D.; Halloy, J.; Gaspard, P., Biochemical clocks and molecular noise: theoretical study of robustness factors, Journal of chemical physics, 116, 12, 10997-11010, (2002)
[27] Geisweiller, N.; Hillston, J.; Stenico, M., Relating continuous and discrete pepa models of signalling pathways, Theoretical computer science, 404, 1-2, 97-111, (2008) · Zbl 1151.68038
[28] Gillespie, D.T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of computational physics, 22, (1976)
[29] Gillespie, D.T., Exact stochastic simulation of coupled chemical reactions, Journal of physical chemistry, 81, 25, (1977)
[30] Gillespie, D., The chemical Langevin equation, Journal of chemical physics, 113, 1, 297-306, (2000)
[31] Goldbeter, A., Computational approaches to cellular rhythms, Nature, 420, 238-245, (2002)
[32] Ghosh, R.; Tomlin, C., Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: delta-notch protein signalling, IEEE systems biology, 1, 1, 170-183, (2004)
[33] T. A. Henzinger, The theory of hybrid automata, in: LICS’96: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, 1996.
[34] Henzinger, T.A.; Ho, P.H.; Wong-Toi, H., Hytech: A model checker for hybrid systems, Software tools for technology transfer, 1, 110-122, (1997) · Zbl 1060.68603
[35] J. Hillston, Fluid flow approximation of PEPA models, in: Proceedings of the Second International Conference on the Quantitative Evaluation of Systems, QEST05, 2005.
[36] Haseltine, E.L.; Rawlings, J.B., Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, Journal of chemical physics, 117, 15, (2002)
[37] Kurtz, T.; Ethier, S., Markov processes — characterisation and convergence, (1986), Wiley
[38] Kitano, H., Computational systems biology, Nature, 420, 206-210, (2002)
[39] Kwiatkowska, M.; Norman, G.; Parker, D., Probabilistic symbolic model checking with prism: A hybrid approach, International journal on software tools for technology transfer, 6, 2, 128-142, (2004)
[40] Kurtz, T.G., Solutions of ordinary differential equations as limits of pure jump Markov processes, Journal of applied probability, 7, 49-58, (1970) · Zbl 0191.47301
[41] McAdams, H.H.; Arkin, A., Stochastic mechanisms in gene expression, Proceedings of the national Academy of sciences, 94, 814-819, (1997)
[42] Prism home page. http://www.cs.bham.ac.uk/ dxp/prism/.
[43] Müller, S.; Hofbauer, J.; Endler, L.; Flamm, C.; Widder, S.; Schuster, P., A generalized model of the repressilator, Journal of mathematical biology, 53, 905-937, (2006) · Zbl 1113.92028
[44] N.A. Neogi, Dynamic partitioning of large discrete event biological systems for hybrid simulation and analysis, in: Proceedings of 7th International Workshop on Hybrid Systems: Computation and Control, HSCC 2004, in: LNCS, vol. 2993, 2004, pp. 463-476. · Zbl 1135.93311
[45] Norris, J.R., Markov chains, (1997), Cambridge University Press · Zbl 0873.60043
[46] Pahle, J., Biochemical simulations: stochastic, approximate stochastic and hybrid approaches, Brief bioinformatics, 10, 1, 53-64, (2009)
[47] Priami, C.; Regev, A.; Shapiro, E.Y.; Silverman, W., Application of a stochastic name-passing calculus to representation and simulation of molecular processes, Information processing letters, 80, 1, 25-31, (2001) · Zbl 0997.92018
[48] Ross, S.M., Stochastic processes, (1996), Wiley New York · Zbl 0888.60002
[49] Saraswat, V.A., Concurrent constraint programming, (1993), MIT press · Zbl 1002.68026
[50] Vilar, J.M.G.; Yuan Kueh, H.; Barkai, N.; Leibler, S., Mechanisms of noise resistance in genetic oscillators, Proceedings of the national Academy of sciences, 99, 9, 5991, (2002)
[51] Wilkinson, D.J., Stochastic modelling for systems biology, (2006), Chapman & Hall · Zbl 1099.92004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.