# zbMATH — the first resource for mathematics

A unified approach to various generalizations of Armendariz rings. (English) Zbl 1198.16025
Let $$R$$ be a ring, $$(S,\leq)$$ a strictly ordered monoid (i.e., for all $$a,b,c\in S$$, $$a<b$$ implies $$ca<cb$$ and $$ac<bc$$), and $$\omega\colon S\to\text{End}(R)$$ a monoid homomorphism denoted by $$\omega_s$$ for $$s\in S$$. Let $$A$$ be the set of all functions $$f\colon S\to R$$ such that the support of $$f$$, $$\{s\in S\mid f(s)\neq 0\}$$ is Artinian and narrow (i.e., every nonempty subset of $$S$$ has at least one but only a finite number of minimal elements). Denote the set $$\{(x,y)\in\text{supp}(f)\times\text{supp}(g)\mid s=xy\}$$ by $$X_s(f,g)$$ for $$s\in S$$ and $$f,g\in A$$, and define $$(fg)(s)=\sum f(x)\omega_s(g(y))$$ for $$(x,y)\in X_s(f,g)$$ and $$(f+g)(s)=f(s)+g(s)$$. Then $$A$$ is called the ring of skew generalized power series $$R[\![S,\omega,\leq]\!]$$ with coefficients in $$R$$ and exponents in $$S$$.
The ring $$A$$ is a generalization of a skew polynomial ring, skew power series ring, skew Laurent polynomial ring, and skew group ring. A ring is called Armendariz relative to $$S$$ if $$f=\sum a_is_i$$ and $$g=\sum b_it_i\in A$$ such that $$fg=0$$ implies $$a_ib_j=0$$ for all $$i,j$$, and $$R$$ is called $$(S,\omega)$$-Armendariz if $$fg=0$$ for $$f,g\in A$$ implies $$f(s)\omega_s(g(t))=0$$ for all $$s,t\in S$$. The class of $$(S,\omega)$$-Armendariz rings generalizes skew Armendariz rings. An $$S$$-compatible (or $$S$$-rigid) ring $$R$$ is defined if $$\omega_s$$ is compatible (or rigid) for all $$s\in S$$. Then the authors show some properties of an $$S$$-compatible ring in terms of the annihilators of subsets $$Y\subset A$$ and $$X\subset R$$ in $$R$$.
Theorem. Assume $$R$$ is compatible. If $$A$$ is right Ikeda-Nakayama, so is $$R$$ (i.e., $$\text{ann}^R_l(I\cap J)=\text{ann}^R_l(I)+\text{ann}^R_l(J)$$ for all right ideals $$I,J$$ of $$R$$ where $$\text{ann}^R_l(X)=$$ all left annihilators of $$X$$ in $$R$$).
Also properties of an $$(S,\omega)$$-Armendariz ring are given related to other kinds of rings such as reduced, reversible, semicommutative, Abelian, 2-primal, and semiprime Goldie. Moreover, an $$(S,\omega)$$-Armendariz ring $$R$$ is characterized in terms of the extensions $$R[\![x,\sigma]\!]/(x^n)$$, $$R[\![x]\!]$$, $$R[x,x^{-1}]$$, and $$R[\![x,x^{-1}]\!]$$ where $$\sigma$$ is an injective endomorphism of $$R$$ and $$n\geq 2$$. Furthermore, it is shown that some kind of right uniserial rings are $$(S,\omega)$$-Armendariz, and an $$(S,\omega)$$-Armendariz ring $$R$$ is characterized in terms of subring of an upper triangular matrix ring of order $$n$$ over $$R$$ for any integer $$n$$.

##### MSC:
 16S36 Ordinary and skew polynomial rings and semigroup rings 16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras) 16P60 Chain conditions on annihilators and summands: Goldie-type conditions 16U80 Generalizations of commutativity (associative rings and algebras)
Full Text:
##### References:
 [1] DOI: 10.3792/pjaa.73.14 · Zbl 0960.16038 [2] DOI: 10.2307/2046728 · Zbl 0691.13027 [3] Puczyłowski, Algebra and its Applications pp 269– (2006) [4] DOI: 10.1016/j.jpaa.2007.06.010 · Zbl 1162.16021 [5] DOI: 10.1006/jabr.1999.8217 · Zbl 0958.16002 [6] Okniński, Semigroup Algebras (1991) [7] DOI: 10.1016/S0021-8693(03)00155-8 · Zbl 1054.16018 [8] DOI: 10.1155/2007/61549 · Zbl 1140.16011 [9] Birkenmeier, Ring Theory (Granville, OH, 1992) pp 102– (1993) [10] DOI: 10.1007/BF02574180 · Zbl 0425.06010 [11] DOI: 10.1017/S1446788700029190 · Zbl 0292.16009 [12] Moussavi, J. Korean Math. Soc. 42 pp 353– (2005) [13] DOI: 10.1081/AGB-120003481 · Zbl 1010.16025 [14] DOI: 10.1080/00927870801941150 · Zbl 1159.16032 [15] DOI: 10.1080/00927879808826274 · Zbl 0915.13001 [16] DOI: 10.1006/jabr.1995.1385 · Zbl 0847.20021 [17] DOI: 10.1081/AGB-200034148 · Zbl 1064.16027 [18] DOI: 10.1007/s00233-008-9063-7 · Zbl 1177.16030 [19] DOI: 10.1016/S0021-8693(03)00301-6 · Zbl 1045.16001 [20] DOI: 10.1016/S0022-4049(02)00070-1 · Zbl 1046.16015 [21] Marks, Advances in Ring Theory, 26 pp 239– (1997) [22] DOI: 10.1081/AGB-200049869 · Zbl 1088.16021 [23] DOI: 10.1081/AGB-120039287 · Zbl 1067.16064 [24] DOI: 10.4064/cm113-1-9 · Zbl 1165.16014 [25] Lee, Houston J. Math. 29 pp 583– (2003) [26] Lam, A First Course in Noncommutative Rings (1991) [27] Krempa, Algebra Colloq. 3 pp 289– (1996) [28] DOI: 10.1155/IJMMS/2006/35238 · Zbl 1143.16008 [29] DOI: 10.1080/00927870600549782 · Zbl 1121.16037 [30] DOI: 10.1006/jabr.1999.8017 · Zbl 0957.16018 [31] DOI: 10.1016/0021-8693(72)90033-6 · Zbl 0233.16003 [32] DOI: 10.1081/AGB-120013179 · Zbl 1023.16005 [33] DOI: 10.1080/00927879808826150 · Zbl 0901.16009 [34] DOI: 10.1081/AGB-120016752 · Zbl 1042.16014 [35] DOI: 10.1016/S0022-4049(01)00053-6 · Zbl 1007.16020 [36] DOI: 10.1007/s10474-005-0191-1 · Zbl 1081.16032 [37] DOI: 10.1081/AGB-200053826 · Zbl 1069.16032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.