×

zbMATH — the first resource for mathematics

Hadamard matrices and their applications: progress 2007–2010. (English) Zbl 1198.15001
Summary: We survey research progress in Hadamard matrices, especially cocyclic Hadamard matrices, their generalisations and applications, made over the past three years. Advances in 20 specific problems and several new research directions are outlined. Two new problems are presented.

MSC:
15-02 Research exposition (monographs, survey articles) pertaining to linear algebra
15B34 Boolean and Hadamard matrices
94A60 Cryptography
Software:
GAP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, S.S., Crawford, M., Greeley, C., Lee, B., Murugan, M.K.: Multilevel and multidimensional Hadamard matrices. Des. Codes Cryptogr. 51, 245–252 (2009) · Zbl 1247.05040 · doi:10.1007/s10623-008-9258-7
[2] Alvarez, V., Armario, J.A., Frau, M.D., Gudiel, F., Osuna, A.: Rooted trees searching for cocyclic Hadamard matrices over D 4t , AAECC-19. In: Bras-Amoros, M., Hoholdt, T. (eds.) LNCS, vol. 5527, pp. 204–214. Springer, Berlin (2009) · Zbl 1273.05020
[3] Alvarez, V., Armario, J.A., Frau, M.D., Real, P.: A system of equations for describing cocyclic Hadamard matrices. c 16(4), 276–290 (2008) · Zbl 1182.05019
[4] Alvarez, V., Armario, J.A., Frau, M.D., Real, P.: J. Symb. Comput. 44, 558–570 (2009) · Zbl 1163.05004 · doi:10.1016/j.jsc.2007.06.009
[5] Alvarez, V., Frau, M.D., Osuna, A.: A Heuristic Procedure with Guided Reproduction for Constructing Cocyclic Hadamard Matrices, ICANNGA 2009. In: Kolehmainen, M. et al., (eds.) LNCS, vol. 5495, pp. 150–160. Springer, Berlin (2009)
[6] Bierbrauer, J.: New commutative semifields and their nuclei. In: Bras-Amorós, M., Hoholdt, T. (eds.). AAECC 2009. LNCS, vol. 5527, pp. 179–185 (2009) · Zbl 1273.12006
[7] Bierbrauer, J.: New semifields, PN and APN functions. Des. Codes Cryptogr. 54, 189–200 (2010) · Zbl 1269.12006 · doi:10.1007/s10623-009-9318-7
[8] Borges, J., Phelps, K.T., Rifa, J.: The rank and kernel of extended 1-perfect \({\mathbb Z}_4\) -linear codes and additive non- \({\mathbb Z}_4\) -linear codes. IEEE Trans. Inf. Theory 49(8), 2028–2034 (2003) · Zbl 1282.94085 · doi:10.1109/TIT.2003.814490
[9] Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-regular Graphs. Springer, Heidelberg, Berlin (1989) · Zbl 0747.05073
[10] Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inf. Theory 52, 1141–1152 (2006) · Zbl 1177.94136 · doi:10.1109/TIT.2005.864481
[11] Budaghyan, L., Carlet, C., Leander, G.: Another class of quadratic APN binomials over \({\mathbb F}_{2^n}\) : the case n divisible by 4. In: Proceedings, International Workshop on Coding and Cryptography, INRIA-Rocquencourt, France, 16–20 April 2007, pp. 49–58
[12] Cameron, P.: Personal Communication. 2 July 2009
[13] Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998) · Zbl 0938.94011 · doi:10.1023/A:1008344232130
[14] Chen, Y.-Q.: Twisted product of cocycles and factorization of semi-regular relative difference sets. J. Comb. Des. 16, 431–441 (2008) · Zbl 1148.05015 · doi:10.1002/jcd.20195
[15] Coulter, R.S., Henderson, M.: Commutative presemifields and semifields. Adv. Math. 217, 282–304 (2008) · Zbl 1194.12007 · doi:10.1016/j.aim.2007.07.007
[16] Craigen, R.: Mathematical Reviews. MR2265694 (2008d:05036)
[17] Craigen, R., de Launey, W.: Generalized Hadamard matrices whose transposes are not generalized Hadamard matrices. J. Comb. Des. 17, 456–458 (2009) · Zbl 1209.05036 · doi:10.1002/jcd.20221
[18] Craigen, R., de Launey, W.: Personal Correspondence. 27 July 2009
[19] Craigen, R., Holzmann, W.H., Kharaghani, H.: On the asymptotic existence of complex Hadamard matrices. J. Comb. Des. 5, 319–327 (1997) · Zbl 0913.05030 · doi:10.1002/(SICI)1520-6610(1997)5:5<319::AID-JCD1>3.0.CO;2-I
[20] Craigen, R., Kharaghani, H.: Hadamard matrices and Hadamard designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 273–280. CRC Press, Boca Raton (2007)
[21] de Caen, D., Mathon, R., Moorhouse, G.E.: A family of antipodal distance-regular graphs related to the classical Preparata codes. J. Algebr. Comb. 4, 317–327 (1995) · Zbl 0832.05100 · doi:10.1023/A:1022429800058
[22] de Launey, W.: On the asymptotic existence of Hadamard matrices. J. Comb. Theory, A 116, 1002–1008 (2009) · Zbl 1219.05029 · doi:10.1016/j.jcta.2009.01.001
[23] de Launey, W., Gordon, D.M.: On the density of the set of known Hadamard orders. Cryptogr. Comm. (2010, CCDS special issue). doi: 10.1007/s12095-010-0028-9 · Zbl 1198.94090
[24] de Launey, W., Kharaghani, H.: On the asymptotic existence of cocyclic Hadamard matrices. J. Comb. Theory, A 116, 1140–1153 (2009) · Zbl 1197.05021 · doi:10.1016/j.jcta.2009.03.002
[25] de Launey, W., Smith, M.J.: Cocyclic orthogonal designs and the asymptotic existence of cocyclic Hadamard matrices and maximal size relative difference sets with forbidden subgroup of size 2. J. Comb. Theory, A 93, 37–92 (2001) · Zbl 1001.05032 · doi:10.1006/jcta.2000.3062
[26] de Launey, W., Stafford, R.M.: Automorphisms of higher-dimensional Hadamard matrices. J. Comb. Des. 16, 507–544 (2008) · Zbl 1182.05022 · doi:10.1002/jcd.20200
[27] Dillon, J.F.: Personal Correspondence. 27 February and 15 March 2010
[28] Djokovic, D.Z.: Hadamard matrices of order 764 exist. Combinatorica 28(4) 487–489 (2008) · Zbl 1164.05004 · doi:10.1007/s00493-008-2384-z
[29] Farmer, D.G., Horadam, K.J.: Presemifield bundles over GF(p 3). In: Proc. ISIT 2008, pp. 2613–2616. IEEE, Toronto (2008)
[30] Farmer, D.G., Horadam, K.J.: A polynomial approach to cocycles over elementary abelian groups. J. Aust. Math. Soc. 85, 177–190 (2008) · Zbl 1193.20064 · doi:10.1017/S1446788708000876
[31] Galati, J.C.: A group extensions approach to relative difference sets. J. Comb. Des. 12, 279–298 (2004) · Zbl 1045.05021 · doi:10.1002/jcd.10090
[32] Gibbons, P.B., Mathon, R.: Enumeration of generalised Hadamard matrices of order 16 and related designs. J. Comb. Des. 17, 119–135 (2009) · Zbl 1171.05004 · doi:10.1002/jcd.20193
[33] Horadam, K.J.: A theory of highly nonlinear functions, AAECC-16. In: Fossorier, M. et al., (eds.) LNCS, vol. 3857, pp. 87–100. Springer, Berlin (2006) · Zbl 1125.94022
[34] Horadam, K.J.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton, NJ (2007) · Zbl 1145.05014
[35] Horadam, K.J.: EA and CCZ equivalence of functions over GF(2 n ). In: von zur Gathen, J., et al. (eds.) Proc. WAIFI 2008. LNCS, vol. 5130, pp. 134–143. Springer, Berlin (2008) · Zbl 1247.94026
[36] Horadam, K.J.: Orbiting round the Five-fold constellation (invited lecture). In: Group Theory, Combinatorics and Computation 2009. International Conference in Honour of Professor Cheryl Praeger’s 60th Birthday, Perth, 5 January 2009
[37] Horadam, K.J., Farmer, D.G.: Bundles, presemifields and nonlinear functions. In: Augot, D., Sendrier, N., Tillich J.-P. (eds.) Proc. International Workshop on Coding and Cryptography, pp. 197–206. Versailles, France (2007) · Zbl 1178.94190
[38] Horadam, K.J., Farmer, D.G.: Bundles, presemifields and nonlinear functions. Des. Codes Cryptogr. 49, 79–94 (2008) · Zbl 1178.94190 · doi:10.1007/s10623-008-9172-z
[39] Ito, N.: Hadamard graphs I; II. Graphs Comb. 1, 57–64; 331–337 (1985) · Zbl 0587.05046 · doi:10.1007/BF02582929
[40] Kyureghyan, G.M., Pott, A.: Some theorems on planar mappings. In: von zur Gathen, J., et al. (eds.) Proc. WAIFI 2008. LNCS, vol. 5130, pp. 117–122. Springer, Berlin (2008) · Zbl 1180.94056
[41] Ma, K.: Equivalence classes of n-dimensional proper Hadamard matrices. Australas. J. Combin. 25, 3–17 (2002) · Zbl 0990.05017
[42] McGuire, G., Ward, H.N.: Cocyclic Hadamard matrices from forms over finite Frobenius rings. Linear Algebra App. 430, 1730–1738 (2009) · Zbl 1168.15013 · doi:10.1016/j.laa.2008.04.027
[43] Ó Catháin P.: Group Actions on Hadamard Matrices, M. Litt. Thesis, National University of Ireland, Galway (2008) · Zbl 1242.05038
[44] Ó Catháin, P., Röder, M.: The cocyclic Hadamard matrices of order less than 40. Des. Codes Cryptogr. (2010). doi: 10.1007/s10623-010-9385-9 · Zbl 1246.05033
[45] Ó Catháin, P., Stafford, R.M.: On twin prime power Hadamard matrices. Cryptogr. Comm. (2010, CCDS special issue). doi: 10.1007/s12095-010-0030-2 · Zbl 1225.05055
[46] Phelps, K.T., Rifa, J., Villanueva, M.: Rank and kernel of binary Hadamard codes. IEEE Trans. Inf. Theory 51(11), 3931–3937 (2005) · Zbl 1318.94097 · doi:10.1109/TIT.2005.856940
[47] Phelps, K.T., Rifa, J., Villanueva, M.: Hadamard codes of length 2 t s (s odd): Rank and kernel, AAECC-16. In: Fossorier, M., et al. (eds.) LNCS, vol. 3857, pp. 328–337. Springer, Berlin (2006) · Zbl 1125.94045
[48] Pott, A.: A survey on relative difference sets. In: Groups, Difference Sets and the Monster, pp. 195–232. de Gruyter, New York (1996) · Zbl 0847.05018
[49] Rifa, J., Solov’eva, F.I., Villanueva, M.: On the intersection of \({\mathbb Z}_2{\mathbb Z}_4\) -additive Hadamard codes. IEEE Trans. Inf. Theory 55(4), 1766–1774 (2009) · Zbl 1367.94409 · doi:10.1109/TIT.2009.2013037
[50] Stepanov, S.A.: A new class of nonlinear senary codes. Probl. Inf. Transm. 42(2), 114–122 (2006) · Zbl 1237.94130 · doi:10.1134/S0032946006020050
[51] Trinh, Q.K., Fan, P., Gabidulin, E.M.: Multilevel Hadamard matrices and zero correlation zone sequences. Electron. Lett. 42(13), 748–750 (2006) · doi:10.1049/el:20060475
[52] Yang, Y.X., Niu, X.X., Xu, C.Q.: Theory and Applications of Higher Dimension Hadamard Matrices, 2nd edn. Chapman and Hall (2010). ISBN: 978-1-4398180-7-7
[53] Zha, Z., Kyuraghyan, G., Wang, X.: Perfect nonlinear binomials and their semifields. Finite Fields Appl. 15, 125–133 (2009) · Zbl 1194.12003 · doi:10.1016/j.ffa.2008.09.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.