zbMATH — the first resource for mathematics

Some results concerning cryptographically significant mappings over \(\text{GF}(2^{n})\). (English) Zbl 1197.94201
Summary: We investigate the existence of permutation polynomials of the form \(F(x) = x ^{d } + L(x)\) over \(\text{GF}(2^{n})\), \(L\) being a linear polynomial. The results we derive have a certain impact on the long-term open problem on the nonexistence of APN permutations over \(\text{GF}(2^{n})\), when \(n\) is even. It is shown that certain choices of exponent \(d\) cannot yield APN permutations for even \(n\). When \(n\) is odd, an infinite class of APN permutations may be derived from Gold mapping \(x^{3}\) in a recursive manner, that is starting with a specific APN permutation on \(\text{GF}(2^{k})\), \(k\) odd, APN permutations are derived over \(\text{GF}(2^{k+2i })\) for any \(i \geq 1\). But it is demonstrated that these classes of functions are simply affine permutations of the inverse coset of the Gold mapping \(x^{3}\). This essentially excludes the possibility of deriving new EA-inequivalent classes of APN functions by applying the method of L. Berveglieri et al. [in: Advances in cryptology – ASIACRYPT 2004. 10th international conference on the theory and application of cryptology and information security, Jeju Island, Korea, December 5–9, 2004. Proceedings. Berlin: Springer. Lecture Notes in Computer Science 3329, 79–91 (2004; Zbl 1094.94028)] to arbitrary APN functions.

94A60 Cryptography
Full Text: DOI
[1] Berger T.P., Canteaut A., Charpin P., Laigle-Chapuy Y.: On almost perfect nonlinear functions over GF(2 n ). IEEE Trans. Inform. Theory IT-52(9), 4160–4170 (2006) · Zbl 1184.94224 · doi:10.1109/TIT.2006.880036
[2] Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991) · Zbl 0729.68017 · doi:10.1007/BF00630563
[3] Breveglieri L., Cherubini A., Macchetti M.: On the generalized linear equivalence of functions over finite fields. In: Advances in Cryptology–ASIACRYPT 2004. Lecture Notes in Computer Science, LNCS vol. 3329, pp. 79–91. Springer-Verlag, Berlin (2004). · Zbl 1094.94028
[4] Budaghyan L.: The simplest method for constructing APN polynomials EA-inequivalent to power functions. In: Arithmetic of Finite Fields, WAIFI 2007. LNCS, vol. 4547, pp. 177–188. Springer-Verlag, Berlin (2007). · Zbl 1177.94133
[5] Budaghyan L., Carlet C., Pott A.: New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inform. Theory IT-52(3), 1141–1152 (2006) · Zbl 1177.94136 · doi:10.1109/TIT.2005.864481
[6] Carlet, C.: A Construction Of Bent Functions. Finite Fields and Applications, London Mathematical Society Lecture Notes Series 233, pp. 47–58. Cambridge University Press, Cambridge (1996) · Zbl 0871.94027
[7] Carlet C.: Vectorial Boolean functions for cryptography. In: Crama E.Y., Hammer P. (eds.) Boolean Methods and Models. Cambridge University Press, Cambridge (2009). · Zbl 1248.94060
[8] Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998) · Zbl 0938.94011 · doi:10.1023/A:1008344232130
[9] Chabaud F., Vaudenay S.: Links between differential and linear cryptanalysis. In: Advances in Cryptology–EUROCRYPT’94. LNCS, vol. 950, pp. 356–365. Springer-Verlag, New York (1994). · Zbl 0879.94023
[10] Charpin P., Gong G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inform. Theory IT-54(9), 4230–4238 (2008) · Zbl 1184.94233 · doi:10.1109/TIT.2008.928273
[11] Charpin P., Kyureghyan G.: Cubic monomial bent functions: a subclass of \({\mathcal{M}}\) . SIAM J. Discrete Math. 22(2), 650–665 (2008) · Zbl 1171.11062 · doi:10.1137/060677768
[12] Charpin P., Kyureghyan G.: On a class of permutation polynomials over \({{F}_{2^n}}\) . In: Sequences and Their Applications-SETA 2008. LNCS, vol. 5203, pp. 368–376. Springer-Verlag, Berlin (2008). · Zbl 1180.11038
[13] Dillon J., Dobbertin H.: New cyclic difference sets with singer parameters. Finite Fields Appl. 10, 342–389 (2004) · Zbl 1043.05024 · doi:10.1016/j.ffa.2003.09.003
[14] Dillon J.F.: Elementary Haddamard difference sets. Ph. D. thesis, University of Maryland, USA (1974).
[15] Dillon J.F.: APN polynomials: An Update. To be published in proceedings of: The 9th Conference on Finite Fields and Applications FQ9, Dublin, Ireland (2009).
[16] Dobbertin H.: Almost perfect nonlinear power functions over GF(2 n ): a new case for n divisible by 5. In: Jungnickel D., Niederreiter H., (eds.) proceedings of: The fifth Conference on Finite Fields and Applications FQ5, pp. 113–121. Springer-Verlag (1999). · Zbl 1010.94550
[17] Dobbertin H.: Almost perfect nonlinear power functions on GF(2 n ): The Welch case. IEEE Trans. Inform. Theory IT-45(4), 1271–1275 (1999) · Zbl 0957.94021 · doi:10.1109/18.761283
[18] Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory IT-45(4), 1237–1243 (1999) · Zbl 1246.11185
[19] Hou X.D.: Affinity of permutations of \({\mathbb{F}_{2^n}}\) . Discrete Appl. Math. 154(2), 313–325 (2006) · Zbl 1089.94020 · doi:10.1016/j.dam.2005.03.022
[20] Laigle-Chapuy Y.: A note on a class of quadratic permutations over \({{F}_{2^n}}\) . In Proceedings of the 17th Symposium on Applied algebra, Algebraic algorithms, and Error Correcting Codes AAECC 17. LNCS, vol. 4851, pp. 130–137. Springer-Verlag (2007). · Zbl 1195.11159
[21] Leander N.G.: Monomial bent functions. IEEE Trans. Inform. Theory IT-52(2), 738–743 (2006) · Zbl 1161.94414 · doi:10.1109/TIT.2005.862121
[22] Lidl R., Niederreiter R.E.: Finite fields. Cambridge University Press, Cambridge (1997) · Zbl 1139.11053
[23] Macchetti M.: Addendum to ”On the generalized linear equivalence of functions over finite fields”. Cryptology ePrint Archive, Report 2004/347, (2004) http://eprint.iacr.org/ . · Zbl 1094.94028
[24] Matsui M.: Linear cryptanalysis method for DES cipher. In: Advances in Cryptology–EUROCRYPT’93. LNCS, vol. 765, pp. 386–397. Springer-Verlag, Berlin (1993). · Zbl 0951.94519
[25] Niederreiter H., Robinson K.H.: Complete mappings of finite fields. J. Aust. Math. Soc. Ser. A 33, 197–212 (1982) · Zbl 0495.12018 · doi:10.1017/S1446788700018346
[26] Pasalic E.: On cryptographically significant mappings over GF (2 n ). In Proceedings of Arithmetics of Finite Fields, Second International Conference, WAIFI 2008. LNCS, vol. 5130, pp. 189–204. Springer-Verlag, Berlin (2008). · Zbl 1247.94029
[27] Rothaus O.S.: On bent functions. J. Combin. Theory Ser. A 20, 300–305 (1976) · Zbl 0336.12012 · doi:10.1016/0097-3165(76)90024-8
[28] Zheng Y., Zheng X.-M.: On plateaued functions. IEEE Trans. Inform. Theory IT-47(3), 1215–1223 (2001) · Zbl 0999.94026 · doi:10.1109/18.915690
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.