×

zbMATH — the first resource for mathematics

Numerical simulation of quantum state reduction in Bose-Einstein condensates with attractive interactions. (English) Zbl 1197.82035

MSC:
82B10 Quantum equilibrium statistical mechanics (general)
82B26 Phase transitions (general) in equilibrium statistical mechanics
81P15 Quantum measurement theory, state operations, state preparations
82-08 Computational methods (statistical mechanics) (MSC2010)
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1088/0264-9381/15/9/019 · Zbl 0936.83037
[2] DOI: 10.1007/BF02105068 · Zbl 0855.53046
[3] DOI: 10.1016/0003-4916(76)90057-9
[4] DOI: 10.1103/PhysRevD.34.470 · Zbl 1222.82047
[5] DOI: 10.1103/PhysRevLett.62.485
[6] DOI: 10.1103/PhysRevA.39.2277
[7] DOI: 10.1007/BF02717926
[8] Károlyházy F., Magyar Fiz. Poly. 12 pp 24–
[9] Károlyházy F., On the Possible Role of Gravity on the Reduction of the Wave Function (1986)
[10] DOI: 10.1016/0375-9601(87)90681-5
[11] DOI: 10.1103/PhysRevA.40.1165
[12] DOI: 10.1103/PhysRevA.42.1057
[13] Penrose R., Non-Locality and Objectivity in Quantum State Reduction in Fundamental Aspects of Quantum Theory (1994)
[14] Penrose R., Shadows of the Mind: An Approach to the Missing Science of Consciousness (1994)
[15] Penrose R., Phil. Trans. R. Soc. 356 pp 1–
[16] DOI: 10.1103/RevModPhys.71.463
[17] DOI: 10.1103/PhysRevLett.91.130401
[18] DOI: 10.1103/PhysRevA.54.3151
[19] DOI: 10.1103/PhysRevLett.76.2670
[20] DOI: 10.1016/0375-9601(96)00538-5
[21] DOI: 10.1103/PhysRevA.51.4704
[22] DOI: 10.1103/PhysRevLett.76.6
[23] DOI: 10.1088/0953-4075/33/1/306
[24] DOI: 10.1103/PhysRevA.58.584
[25] DOI: 10.1007/BF01208265 · Zbl 0527.35023
[26] Rypdal K., Physica D 16 pp 1985–
[27] DOI: 10.1103/PhysRevE.47.R13
[28] DOI: 10.1016/0167-2789(95)00150-3 · Zbl 1194.35418
[29] DOI: 10.1103/PhysRevA.51.1382
[30] DOI: 10.1103/PhysRevE.62.2937
[31] DOI: 10.1103/PhysRevE.62.1382
[32] DOI: 10.1103/PhysRevE.62.7438
[33] DOI: 10.1137/S1064827503422956 · Zbl 1061.82025
[34] DOI: 10.1016/j.jcp.2006.04.019 · Zbl 1330.82031
[35] DOI: 10.1103/PhysRevE.53.1969
[36] DOI: 10.1103/PhysRevE.75.066704
[37] DOI: 10.1103/PhysRevE.76.036712
[38] DOI: 10.1016/S0021-9991(03)00097-4 · Zbl 1028.82500
[39] DOI: 10.1088/0951-7715/12/2/002 · Zbl 0942.35077
[40] DOI: 10.1103/PhysRevLett.75.1687
[41] DOI: 10.1103/PhysRevLett.78.985
[42] DOI: 10.1007/s003400050293
[43] DOI: 10.1142/S0217979295000380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.