×

zbMATH — the first resource for mathematics

Implementing peridynamics within a molecular dynamics code. (English) Zbl 1197.82014
Summary: Peridynamics (PD) is a continuum theory that employs a nonlocal model to describe material properties. In this context, nonlocal means that continuum points separated by a finite distance may exert force upon each other. A meshless method results when PD is discretized with material behavior approximated as a collection of interacting particles. This paper describes how PD can be implemented within a molecular dynamics (MD) framework, and provides details of an efficient implementation. This adds a computational mechanics capability to an MD code, enabling simulations at mesoscopic or even macroscopic length and time scales.

MSC:
82-04 Software, source code, etc. for problems pertaining to statistical mechanics
82D99 Applications of statistical mechanics to specific types of physical systems
Software:
LAMMPS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bažant, Z.P.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress, J. eng. mech., 128, 1119-1149, (2002)
[2] Bobaru, F., Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: A peridynamic approach, Modelling and simulation in materials science and engineering, 15, 397-417, (2007)
[3] Chen, Y.; Lee, J.D.; Eskandarian, A., Atomistic viewpoint of the applicability of microcontinuum theories, Int. J. solids structures, 41, 2085-2097, (2004) · Zbl 1081.74004
[4] Dupuy, L.M.; Tadmor, E.B.; Miller, R.E.; Phillips, R., Finite-temperature quasicontinuum: molecular dynamics without all the atoms, Phys. rev. lett., 95, 6, 060202, (2005)
[5] Hockney, R.W.; Goel, S.P.; Eastwood, J.W., Quiet high-resolution computer models of a plasma, J. comp. phys., 14, 148-158, (1974)
[6] Lehoucq, R.B.; Silling, S.A., Force flux and the peridynamic stress tensor, J. mech. phys. solids, 56, 1566-1577, (2008), Available at doi:10.1016/j.jmps.2007.08.004 · Zbl 1171.74319
[7] Lennard-Jones, J.E., Cohesion, Proc. phys. soc., 43, 5, 461-482, (1931) · Zbl 0002.37202
[8] Li, S.; Liu, W.K., Meshfree particle methods, (2004), Springer-Verlag · Zbl 1073.65002
[9] Luan, B.Q.; Hyun, S.; Molinari, J.F.; Bernstein, N.; Robbins, M.O., Multiscale modeling of two-dimensional contacts, Phys. rev. E (statistical, nonlinear, and soft matter physics), 74, 4, 046710, (2006)
[10] Miller, R.E.; Tadmor, E.B., Hybrid continuum mechanics and atomistic methods for simulating materials deformation and failure, (), 920-926, Available at
[11] Padding, J.T.; Louis, A.A., Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales, Phys. rev. E (statistical, nonlinear, and soft matter physics), 74, 3, 031402, (2006)
[12] M.L. Parks, S.J. Plimpton, R.B. Lehoucq, S.A. Silling, Peridynamics with LAMMPS: A user guide, Technical Report SAND 2008-1035, Sandia National Laboratories, January 2008. Available at http://www.sandia.gov/ mlparks · Zbl 1197.82014
[13] Plimpton, S.J., Fast parallel algorithms for short-range molecular dynamics, J. comp. phys., 117, 1-19, (1995), Available at · Zbl 0830.65120
[14] Silling, S.A., Reformulation of elasticity theory for discontinuities and long-range forces, J. mech. phys. solids, 48, 175-209, (2000), Available at doi:10.1016/S0022-5096(99)00029-0 · Zbl 0970.74030
[15] Silling, S.A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comp. struct., 83, 1526-1535, (2005), Available at doi:10.1016/j.compstruc.2004.11.026
[16] Silling, S.A.; Bobaru, F., Peridynamic modeling of membranes and fibers, Int. J. non-linear mech., 40, 395-409, (2005), Available at doi:10.1016/j.ijnonlinmec.2004.08.004 · Zbl 1349.74231
[17] Silling, S.A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. elasticity, 88, 151-184, (2007), Available at doi:10.1007/s10659-007-9125-1 · Zbl 1120.74003
[18] Silling, S.A., EMU webpage
[19] Silling, S.A.; Lehoucq, R.B., Convergence of peridynamics to classical elasticity theory, J. elasticity, (2008), in press. Available at doi:10.1007/s10659-008-9163-3 · Zbl 1159.74316
[20] Verlet, L., Computer experiments on classical fluids: I. thermodynamical properties of lennard – jones molecules, Phys. rev., 159, 98-103, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.