zbMATH — the first resource for mathematics

Dynamic test method for determining the thermal performances of heat pipes. (English) Zbl 1197.80030
Summary: With a view toward shortening the necessary time to examine the thermal performances of heat pipes, a novel dynamic test method is originated and compared to the conventional steady-states test. A set of dynamic parameters of thermal performances of heat pipes is ideated from the observed transient phenomenon. Bending angles, fill ratios, and shapes of heat pipes are investigated in order to study their influences on the thermal performances of heat pipes for both steady-state and dynamic tests. A model based on the investigated dynamic test is established to explain the experimental results. Experimental results demonstrate that deformation of heat pipes would damage the thermal performances of heat pipes most significantly. Larger fill ratios would increase the operation limitations but also lead to less sensitive temperature responses of heat pipes. The parameters and the influences of factors between the steady-state test and the dynamic test are found to be remarkably analogous. As a consequence, the dynamic test can be adopted instead of the steady-state test to determine the thermal performance of heat pipes when high efficiency is of prior concern.
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI
[1] Peterson, G. P.: An introduction to heat pipes: modeling, testing and applications, (1994)
[2] Faghri, A.: Heat pipe science and technology, (1995)
[3] Dunn, P.; Reay, D. A.: Heat pipes, (1978)
[4] Maziuk, V.; Kulakov, A.; Rabetsky, M.; Vasiliev, L.; Vukovic, M.: Miniature heat-pipe thermal performance prediction tool – software development, Appl. therm. Eng. 21, No. 5, 559-571 (2001)
[5] Chen, Y. M.; Wu, S. C.; Chu, C. I.: Thermal performance of sintered miniature heat pipes, Heat mass transfer 37, No. 6, 611-616 (2001)
[6] Moon, S. H.; Hwang, G.; Yun, H. G.; Choy, T. G.; Ii, Y. Kang: Improving thermal performance of miniature heat pipe for notebook PC cooling, Microelectron. reliab. 42, No. 1, 135-140 (2002)
[7] Moon, S. H.; Hwang, G.; Ko, S. C.; Kim, Y. T.: Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon, Microelectron. reliab. 44, No. 2, 315-321 (2004)
[8] El-Nasr, A. A.; El-Haggar, S. M.: Effective thermal conductivity of heat pipes, Heat mass transfer 32, No. 1, 97-101 (1996)
[9] Cao, Y.; Gao, M.; Beam, J. E.; Donovan, B.: Experiments and analyses of flat miniature heat pipes, J. thermophys. Heat transfer 11, No. 2, 158-164 (1997)
[10] Kempers, R.; Robinson, A. J.; Ewing, D.; Ching, C. Y.: Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe, Int. J. Heat mass transfer 51, No. 25 – 26, 6039-6046 (2008)
[11] El-Genk, M. S.; Huang, L.: An experimental investigation of the transient response of a water heat pipe, Int. J. Heat mass transfer 36, No. 15, 3823-3830 (1993)
[12] Tournier, J. M.; El-Genk, M. S.: Heat pipe transient analysis model, Int. J. Heat mass transfer 37, No. 5, 753-762 (1994) · Zbl 0900.76626 · doi:10.1016/0017-9310(94)90113-9
[13] Wang, Y.; Vafai, K.: Transient characterization of flat plate heat pipes during startup and shutdown operations, Int. J. Heat mass transfer 43, No. 15, 2641-2655 (2000) · Zbl 1065.80500 · doi:10.1016/S0017-9310(99)00295-1
[14] Wang, Y.; Vafai, K.: An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat mass transfer 43, No. 15, 2657-2668 (2000)
[15] Suman, B.; De, S.; Dasgupta, S.: Transient modeling of micro-grooved heat pipe, Int. J. Heat mass transfer 48, No. 8, 1633-1646 (2005) · Zbl 1189.76658 · doi:10.1016/j.ijheatmasstransfer.2004.11.004
[16] Mehta, R. C.; Jayachandran, T.: Numerical analysis of transient two phase flow in heat pipe, Heat mass transfer 31, No. 6, 383-386 (1996)
[17] Faghri, A.; Harley, C.: Transient lumped heat pipe analyses, Heat recovery syst. CHP 14, No. 4, 351-363 (1994)
[18] Murer, S.; Lybaert, P.; Gleton, L.; Sturbois, A.: Experimental and numerical analysis of the transient response of a miniature heat pipe, Appl. therm. Eng. 25, No. 16, 2566-2577 (2005)
[19] Ambrose, J. H.; Chow, L. C.; Beam, J. E.: Detailed model for transient liquid flow in heat pipe wicks, J. thermophys. Heat transfer 5, No. 4, 532-538 (1991)
[20] Sobhan, C. B.; Yang, H. X.; Yu, L. C.: Investigations on transient and steady-state performance of a micro-heat pipe, J. thermophys. Heat transfer 14, No. 2, 161-169 (2000)
[21] Legierski, J.; Wiecek, B.; De Mey, G.: Measurements and simulations of transient characteristics of heat pipes, Microelectron. reliab. 46, No. 1, 109-115 (2006)
[22] Wang, J.: Experimental investigation of the transient thermal performance of a bent heat pipe with grooved surface, Appl. energy 86, No. 10, 2030-2037 (2009)
[23] Churchill, S. W.; Chu, H. H. S.: Correlating equations for laminar and turbulent free convection from a vertical plate, Int. J. Heat mass transfer 18, No. 11, 1323-1329 (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.