×

zbMATH — the first resource for mathematics

Effect of temperature-dependent viscosity on forced convection heat transfer from a cylinder in crossflow of power-law fluids. (English) Zbl 1197.80028
Summary: The steady, two-dimensional and incompressible flow of power-law fluids across an unconfined isothermal heated circular cylinder is investigated numerically to ascertain the effect of temperature-dependent viscosity on the flow and forced convection heat transfer phenomena. Extensive numerical results elucidating the variation of the heat transfer characteristics and drag coefficient on the severity of temperature dependence of viscosity (\(0 \leqslant b \leqslant 0.5\)), power law index (\(0.6 \leqslant n \leqslant 1.6\)), Prandtl number (\(1 \leqslant Pr \leqslant 100\)) and Reynolds number (\(1 \leqslant Re \leqslant 30\)) are presented. The coupled momentum and energy equations are expressed in the stream function/vorticity formulation and solved using a second-order accurate finite difference method to determine the local and surface-averaged Nusselt numbers, the drag coefficient, and to map the flow domain in terms of the temperature and flow fields near the cylinder. The variation of viscosity with temperature is shown to have a substantial effect on both the local and surface-averaged values of the Nusselt number. As expected, the results also suggest that the rate of heat transfer shows positive dependence on the Reynolds number and Prandtl number. Furthermore, stronger the dependence of viscosity on the temperature, the greater is the enhancement in the rate of heat transfer. Finally, all else being equal, shear-thinning fluid behaviour facilitates heat transfer while the shear-thickening behaviour has deleterious effect on heat transfer.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76R05 Forced convection
76A05 Non-Newtonian fluids
76M20 Finite difference methods applied to problems in fluid mechanics
80M20 Finite difference methods applied to problems in thermodynamics and heat transfer
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zdravkovich, M. M.: Flow around circular cylinders: fundamentals, Flow around circular cylinders: fundamentals 1 (1997) · Zbl 0882.76004
[2] Zdravkovich, M. M.: Flow around circular cylinders: applications, Flow around circular cylinders: applications 2 (2003) · Zbl 0882.76004
[3] Chhabra, R. P.; Soares, A. A.; Ferreira, J. M.: Steady non-Newtonian flow past a circular cylinder: a numerical study, Acta mech. 172, 1-16 (2004) · Zbl 1065.76013
[4] Soares, A. A.; Ferreira, J. M.; Chhabra, R. P.: Flow and forced convection heat transfer in crossflow of non-Newtonian fluids over a circular cylinder, Ind. eng. Chem. res. 44, 5815-5827 (2005)
[5] D’alessio, S. J. D.; Pascal, J. P.: Steady flow of a power-law fluid past a cylinder, Acta mech. 117, 87-100 (1996) · Zbl 0868.76007
[6] D’alessio, S. J. D.; Finlay, L. A.: Power law flow past a cylinder at large distances, Ind. eng. Chem. res. 43, 8407-8410 (2004)
[7] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: Steady flow of power law fluids across a circular cylinder, Can. J. Chem. eng. 84, 406-421 (2006)
[8] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: Steady forced convection heat transfer from a heated circular cylinder to power-law fluids, Int. J. Heat mass transfer 50, 977-990 (2007) · Zbl 1124.80308
[9] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: Two-dimensional steady Poiseuille flow of power-law fluids across a circular cylinder in a plane confined channel: wall effects and drag coefficients, Ind. eng. Chem. res. 46, 3820-3840 (2007)
[10] Bharti, R. P.; Chhabra, R. P.; Eswaran, V.: A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder, Heat mass transfer 43, 639-648 (2007) · Zbl 1124.80308
[11] Bharti, R. P.; Sivakumar, P.; Chhabra, R. P.: Forced convection heat transfer from an elliptical cylinder to power-law fluids, Int. J. Heat mass transfer 51, 1838-1853 (2008) · Zbl 1140.80311
[12] Shah, R. K.; London, A. L.: Laminar flow forced convection in ducts, (1978)
[13] Chang, M. W.; Finlayson, B. A.; Sleicher, C. A.: Heat transfer in flow past cylinders at re<150 – part II. Experiments and theory for variable fluid properties, Numer. heat transfer 12, 197-210 (1987) · Zbl 0623.76098
[14] Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K.: The properties of gases and liquids, (1977)
[15] , Polymer handbook (1989)
[16] Domininghaus, H.: Plastics for engineers: materials, properties and applications, (1993)
[17] Sridhar, T.; Chhabra, R. P.; Uhlherr, P. H. T.; Potter, O. E.: Application of hildebrand’s fluidity model to non-Newtonian solutions, Rheol. acta 17, 519-524 (1878)
[18] Gary, J.; Kassoy, D. R.; Tadjeran, H.; Zebib, A.: The effects of significant viscosity variation on convective heat transport in water-saturated porous media, J. fluid mech. 117, 233-249 (1982) · Zbl 0491.76078
[19] J.X. Ling, A. Dybbs, Forced Convection Over a Flat Plate Submersed in a Porous Medium: Variable Viscosity Case, Paper 87-WA/HT-23, ASME, New York, 1987.
[20] Kafoussias, N. G.; Williams, E. W.: The effect of temperature-dependent viscosity on free-forced convective laminar boundary layer flow past a vertical isothermal flat-plate, Acta mech. 110, 123-137 (1995) · Zbl 0857.76082
[21] Kafoussias, N. G.; Rees, D. A. S.; Daskalakis, J. E.: Numerical study of the combined free-forced convective laminar boundary layer flow past a vertical isothermal flat plate with temperature-dependent viscosity, Acta mech. 127, 39-50 (1998) · Zbl 0920.76057
[22] Chang, M. W.; Finlayson, B. A.: Heat transfer in flow past cylinders at re<150 – part I. Calculations for constant fluid properties, Numer. heat transfer 12, 179-195 (1987) · Zbl 0623.76098
[23] Perkins, H. C.; Leppert, G.: Forced convection heat transfer from a uniformly heated cylinder, J. heat transfer 84, 257-263 (1962)
[24] Perkins, H. C.; Leppert, G.: Local heat transfer coefficients on a uniformly heated cylinder, Int. J. Heat mass transfer 7, 143-158 (1964)
[25] Zhukauskas, A.: Heat transfer from tubes in crossflow, Advances in heat transfer 8 (1972)
[26] Whitaker, S.: Elementary heat transfer analysis, (1976)
[27] Pantokratoras, A.: Laminar assisting mixed convection heat transfer from a vertical isothermal cylinder to water with variable physical properties, Z. angew. Math. phys. 53, 569-583 (2002) · Zbl 1010.80003
[28] Molla, M. M.; Hossain, M. A.; Gorla, R. S. R.: Natural convection flow from an isothermal horizontal circular cylinder with temperature dependent viscosity, Heat mass transfer 41, 594-598 (2005)
[29] Cheng, C. Y.: The effect of temperature-dependent viscosity on the natural convection heat transfer from a horizontal isothermal cylinder of elliptic cross section, Int. commun. Heat mass transfer 33, 1021-1028 (2006)
[30] Ahmad, S.; Arifin, N. M.; Nazar, R.; Pop, I.: Mixed convection boundary layer flow past an isothermal horizontal circular cylinder with temperature-dependent viscosity, Int. J. Therm. sci. 48, 1943-1948 (2009)
[31] Chhabra, R. P.; Richardson, J. F.: Non-Newtonian flow and applied rheology, (2008)
[32] Chhabra, R. P.; Richardson, J. F.: Non-Newtonian flow in the process industries, (1999)
[33] Namburu, P. K.; Kulkarni, D. P.; Dandekar, A.; Das, D. K.: Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids, Micro nano lett. 2, 67-71 (2007)
[34] Kwak, K.; Kim, C.: Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea – Australia rheol. J. 17, 35-40 (2005)
[35] Patnana, V. K.; Bharti, R. P.; Chhabra, R. P.: Two-dimensional unsteady flow of power-law fluids over a cylinder, Chem. eng. Sci. 64, 2978-2999 (2009)
[36] Sivakumar, P.; Bharti, R. P.; Chhabra, R. P.: Effect of power law index on critical parameters for power law flow across an unconfined circular cylinder, Chem. eng. Sci. 61, 6035-6046 (2006)
[37] Gupta, A. K.; Sharma, A.; Chhabra, R. P.; Eswaran, V.: Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: momentum and heat-transfer characteristics, Ind. eng. Chem. res. 42, 5674-5686 (2003)
[38] Dhiman, A. K.; Chhabra, R. P.; Eswaran, V.: Heat transfer to power law fluids from a heated square cylinder, Numer. heat transfer 52, 185-201 (2007)
[39] Dhiman, A. K.; Chhabra, R. P.; Eswaran, V.: Steady mixed convection from a confined square cylinder, Int. commun. Heat mass transfer 35, 47-55 (2008) · Zbl 1145.76007
[40] Sahu, A. K.; Chhabra, R. P.; Eswaran, V.: Two-dimensional unsteady laminar flow of a power law fluid across a square cylinder, J. non-Newtonian fluid mech. 160, 157-167 (2009) · Zbl 1274.76063
[41] Sahu, A. K.; Chhabra, R. P.; Eswaran, V.: Forced convection heat transfer from a heated square cylinder to power-law fluids in the unsteady flow regime, Numer. heat transfer, part A 56, 109-131 (2009)
[42] Sun, K. H.; Pyle, D. L.; Fitt, A. D.; Please, C. P.; Baines, M. J.; Hall-Taylor, N.: Numerical study of 2D heat transfer in a scraped surface heat exchanger, Comput fluid 33, 869-880 (2004) · Zbl 1045.76513
[43] Bird, R. B.; Armstrong, R. C.; Hassager, O.: Second ed.dynamics of polymeric liquids, Dynamics of polymeric liquids 1 (1987)
[44] Soares, A. A.; Anacleto, J.; Caramelo, L.; Ferreira, J. M.; Chhabra, R. P.: Mixed convection from a circular cylinder to power law fluids, Ind. eng. Chem. res. 48, 8219-8231 (2009) · Zbl 1197.80028
[45] Chhabra, R. P.; Soares, A. A.; Ferreira, J. M.; Caramelo, L.: Effects of viscous dissipation on heat transfer between an array of long circular cylinders and power law fluids, Can. J. Chem. eng. 85, 808-816 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.