×

zbMATH — the first resource for mathematics

Nanofluid convective heat transfer in a parallel-disk system. (English) Zbl 1197.80009
Summary: Inherently low thermal conductivities of basic fluids form a primary limitation in high-performance cooling which is an essential requirement for numerous thermal systems and micro-devices. Nanofluids, i.e., dilute suspensions of, say, metal-oxide nanoparticles in a liquid, are a new type of coolants with better heat transfer performances than their pure base fluids alone. Using a new, experimentally validated model for the thermal conductivity of nanofluids, numerical simulations have been executed for alumina-water nanofluid flow with heat transfer between parallel disks. The results indicate that, indeed, nanofluids are promising new coolants when compared to pure water. Specifically, smoother mixture flow fields and temperature distributions can be achieved. More importantly, given a realistic thermal load, the Nusselt number increases with higher nanoparticle volume fraction, smaller nanoparticle diameter, reduced disk-spacing, and, of course, larger inlet Reynolds number, expressed in a novel form as Nu = Nu(Re and Br). Fully-developed flow can be assumed after a critical radial distance, expressed in a correlation \(R_{\text{crit}}\) = fct(Re), has been reached and hence analytic solutions provide good approximations. Nanofluids reduce the system’s total entropy generation rate while hardly increasing the required pumping power for any given Re\(_{\text{in}}\). Specifically, minimization of total entropy generation allows for operational and geometric system-optimization in terms of \(S_{\text{gen}}\) = fct (Re and \(\delta\)).

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76M12 Finite volume methods applied to problems in fluid mechanics
82D80 Statistical mechanics of nanostructures and nanoparticles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lee, S.; Choi, S. U. S.: Measuring thermal conductivity of fluids containing oxide nanoparticles, J. heat transfer 121, 280-289 (1999)
[2] Wang, X. W.; Xu, X. F.; Choi, S. U. S.: Thermal conductivity of nanoparticle-fluid mixture, J. thermalphys. Heat transfer 13, 474-480 (1999)
[3] Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. phys. Lett. 78, No. 6, 718-720 (2001)
[4] Li, C. H.; Peterson, G. P.: Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. appl. Phys. 99, No. 8, 084314 (2006)
[5] Xie, H.; Wang, J.; Xi, T.; Liu, Y.: Thermal conductivity of suspensions containing nanosized sic particles, Int. J. Thermophys. 23, No. 2, 571-580 (2002)
[6] Hong, T. K.; Yang, H. S.; Choi, C. J.: Study of enhanced thermal conductivity of fe nanofluids, J. appl. Phys. 97, No. 6, 1-4 (2005)
[7] Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.: Effect of particle size on thermal conductivity of nanofluid, Metall. mater. Trans. A 39A, 1535-1542 (2008)
[8] Mintsa, H. A.; Roy, G.; Nguyen, C. T.; Doucet, D.: New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. sci. 48, 363-371 (2009)
[9] Murshed, S. M. S.; Leong, K. C.; Yang, C.: Enhanced thermal conductivity of tio2-water based nanofluids, Int. J. Therm. sci. 44, 367 (2005)
[10] Duangthongsuk, W.; Wongwaises, S.: Measurement of temperature-dependent thermal conductivity and viscosity of tio2-water nanofluids, Exp. therm. Fluid sci. 33, 706-714 (2009)
[11] Das, S. K.; Putra, N.; Theisen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids, J. heat transfer 125, 567-574 (2003)
[12] Patel, H. E.; Das, S. K.; Sundararajan, T.; Sreekumanran, N. A.; George, B.; Pradeep, T.: Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Appl. phys. Lett. 83, 2931-2933 (2003)
[13] Timofeeva, E. V.; Gavrilov, A. N.; Mccloskey, J. M.; Tolmachev, Y. V.: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. rev. E 76, 061203-1-061203-16 (2007)
[14] Rusconi, R.; Rodari, E.; Piazza, R.: Optical measurement of thermal properties of nanofluids, Appl. phys. Lett. 89, 261916-1-261916-3 (2006)
[15] Putnam, S. A.; Cahill, D. G.; Braun, P. V.: Thermal conductivity of nanoparticle suspensions, J. appl. Phys. 99, 084308-1-084308-6 (2006)
[16] Venerus, D. C.; Kabadi, M. S.; Lee, S.; Perez-Luna, V.: Study of thermal transport in nanoparticle suspension using forced Raleigh scattering, J. appl. Phys. 100, 094310-1-094310-8 (2006)
[17] Williams, W.; Buongiorno, J.; Hu, L. W.: Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. heat transfer 130, 042412-1-042412-7 (2008)
[18] Kolade, B.; Goodson, K.; Eaton, J. K.: Convective performance of nanofluids in a laminar thermally developing tube flow, J. heat transfer 131, 052402-1-052402-8 (2009)
[19] Ju, Y. S.; Kim, J.; Hung, M. T.: Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles, J. heat transfer 130, 092403-1-092403-6 (2008)
[20] Zhu, D.; Li, X.; Wang, N.; Wang, X.; Gao, J.; Li, H.: Dispersion behavior and thermal conductivity characteristics of al2o3-H2O nanofluids, Curr. appl. Phys. 9, 131-139 (2009)
[21] Zhu, H. T.; Zhang, C. Y.; Tang, Y. M.; Wang, J. X.: Novel synthesis and thermal conductivity of cuo nanofluid, J. phys. Chem. C 111, 1646 (2007)
[22] Maxwell, J. C.: A treatise on electricity and magnetism, (1891) · JFM 24.1095.01
[23] Hamilton, R. L.; Crosser, O. K.: Thermal conductivity of heterogeneous two component systems, Ind. eng. Chem. fundam. 1, 187-191 (1962)
[24] Jeffrey, D. J.: Conduction through a random suspension of spheres, Proc. R. Soc. A 335, 355-367 (1973)
[25] Davis, R. H.: The effective thermal conductivity of a composite material with spherical inclusions, Int. J. Thermophys. 7, 609-620 (1986)
[26] Bruggeman, D. A. G.: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I-dielektrizitatskonstanten und leitfaehigkeiten der mischkoerper aus isotropen substanzen, Annalen der physik, Leipzig 24, 636-679 (1935)
[27] Das, S. K.; Choi, S. U. S.; Yu, W.; Pradeep, T.: Nanofluids: science and technology, (2008)
[28] Wang, L. Q.; Zhou, X. S.; Wei, X. H.: Heat conduction mathematical models and analytical solutions, (2008) · Zbl 1237.80002
[29] Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A.: Mechanisms of heat flow in suspensions of nanosized particles (nanofluids), Int. J. Heat mass transfer 45, 855-863 (2002) · Zbl 1017.76094
[30] Y. Feng, A New Thermal Conductivity Model for Nanofluids with Convection Heat Transfer Application, MS Thesis, MAE Department, NC State University, Raleigh, NC, 2009.
[31] Jang, S. P.; Choi, S. U. S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. phys. Lett. 84, 4316-4318 (2004)
[32] Kumar, D. H.; Patel, H. E.; Kumar, V. R. R.; Sundararajan, T.; Pradeep, T.; Das, S. K.: Model for heat conduction in nanofluids, Phys. rev. Lett. 93, 144301-1-144301-4 (2004)
[33] Koo, J.; Kleinstreuer, C.: A new thermal conductivity model for nanofluids, J. nanopart. Res. 6, 577-588 (2004)
[34] J. Li, Computational Analysis of Nanofluid Flow in Microchannels with Applications to Micro-heat Sinks and Bio-MEMS, PhD Thesis, NC State University, Raleigh, NC, United States, 2008.
[35] Bao, Y.: Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids), J. heat transfer 130, 042408-1-042408-5 (2009)
[36] C. Kleinstreuer, Y. Feng, Thermal nanofluid property model with application to nanofluid flow in a parallel-disk system Part I: a new thermal conductivity model for nanofluid flow, ASME J. Heat Transfer (submitted for publication).
[37] Roy, G.; Palm, S. J.; Nguyen, C. T.: Heat transfer and fluid flow of nanofluids in laminar radial flow cooling systems, J. therm. Sci. 14, No. 4, 362-367 (2005)
[38] Gherasim, I.; Roy, G.; Nguyen, C. T.; Vo-Ngoc, D.: Experimental investigation of nanofluids in confined laminar radial flows, Int. J. Therm. sci. 48, 1486-1493 (2009)
[39] Mcginn, J. H.: Observations on the radial flow of water between fixed parallel plates, Appl. sci. Res. A 5, 255-264 (1956)
[40] Achintya, M.: Analytical solutions of Nusselt number for thermally developing radial flow through small gap between two parallel disks, J. heat transfer 131, 054502-1-054502-4 (2009)
[41] Y. Feng, C. Kleinstreuer, Thermal nanofluid property model with application to nanofluid flow in a microchannel Part II: nanofluid flow in a radial parallel-disk system, ASME J. Heat Transfer, (submitted for publication). · Zbl 1197.80009
[42] Li, J. M.; Li, Z. L.; Wang, B. X.: Experimental viscosity measurements for copper oxide nanoparticle suspensions, Tsinghua sci. Tech. 7, 198 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.