zbMATH — the first resource for mathematics

Analytical and numerical solutions to an electrohydrodynamic stability problem. (English) Zbl 1197.78006
Summary: A linear hydrodynamic stability problem corresponding to an electrohydrodynamic convection between two parallel walls is considered. The problem is an eighth order eigenvalue one supplied with hinged boundary conditions for the even derivatives up to sixth order. It is first solved by a direct analytical method. By variational arguments it is shown that its smallest eigenvalue is real and positive. The problem is cast into a second order differential system supplied only with Dirichlet boundary conditions. Then, two classes of methods are used to solve this formulation of the problem, namely, analytical methods (based on series of Chandrasekar-Galerkin type and of Budiansky-DiPrima type) and spectral methods (tau, Galerkin and collocation) based on Chebyshev and Legendre polynomials. For certain values of the physical parameters, the numerically computed eigenvalues from the low part of the spectrum are displayed in a table. The Galerkin and collocation results are fairly closed and confirm the analytical results.

78A25 Electromagnetic theory, general
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI
[1] Bourne, D., Hydrodynamic stability, the Chebyshev tau method and spurious eigenvalues, Continuum mech. thermodyn., 15, 571-579, (2003) · Zbl 1063.76074
[2] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods: evolution to complex geometries and applications to fluid dynamics, (2007), Springer-Verlag · Zbl 1121.76001
[3] Chandrasekhar, S., Hydrodynamic and hydromagnetic stability, (1961), Oxford University Press · Zbl 0142.44103
[4] L. Collatz, Numerical methods for free boundary problems, in: Proceedings of Free Boundary Problems: Theory and Applications, Montecatini, Italy, 1981. · Zbl 0538.65087
[5] Dongarra, J.J.; Straughan, B.; Walker, D.W., Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problem, Appl. numer. math., 22, 399-434, (1996) · Zbl 0867.76025
[6] Dragomirescu, F.I., Rayleigh number in a stability problem for a micropolar fluid, Turk. J. math., 31, 2, 123-137, (2007) · Zbl 1128.76022
[7] Dragomirescu, F.I., Bifurcation and numerical study in an EHD convection problem, An. st. univ. “ovidius” constanta, 16, 2, 47-57, (2008) · Zbl 1199.76016
[8] Gardner, D.R.; Trogdon, S.A.; Douglas, R.W., A modified tau spectral method that eliminates spurious eigenvalues, J. comput. phys., 80, 137-167, (1989) · Zbl 0661.65084
[9] Georgescu, A., Hydrodynamic stability theory, (1985), Kluwer Dordrecht
[10] Georgescu, A.; Pasca, D.; Gradinaru, S.; Gavrilescu, M., Bifurcation manifolds in multiparametric linear stability of continua, Zamm, 73, (1993), 7/8 T767-T768 · Zbl 0803.76039
[11] Georgescu, A.; Palese, L., On a method in linear stability problems. application to a natural convection in a porous medium, Rapp. int. dept. math. univ. Bari, 9, (1996) · Zbl 0900.73166
[12] Georgescu, A.; Gavrilescu, M.; Palese, L., Neutral thermal hydrodynamic and hydromagnetic stability hypersurface for a micropolar fluid layer, Indian J. pure appl. math., 29 6, 575-582, (1998) · Zbl 0921.76066
[13] C.I. Gheorghiu, I.S. Pop, A Modified Chebyshev-Tau Method for a Hydrodynamic Stability Problem, in: Proceedings of ICAOR 1996, vol. II, 1996, pp. 119-126. · Zbl 0888.76065
[14] Gheorghiu, C.I., Spectral methods for differential problems, (2007), Casa Cartii de Stiinta Publishing House Cluj-Napoca · Zbl 1122.65118
[15] Gheorghiu, C.I.; Dragomirescu, F.I., Spectral methods in linear stability. applications to thermal convection with variable gravity field, Appl. numer. math., 59, 1290-1302, (2009) · Zbl 1160.76036
[16] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods, (1977), SIAM Philadelphia, PA. · Zbl 0412.65058
[17] Gross, M.J., Mantles of the Earth and terrestrial planets, (1967), Wiley
[18] Henrici, P., Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices, Numer. math., 4, 24-40, (1962) · Zbl 0102.01502
[19] Hill, A.A.; Straughan, B., A Legendre spectral element method for eigenvalues in hydromagnetic stability, J. comput. appl. math., 193, 363-381, (2003) · Zbl 1092.65065
[20] Huang, W.; Sloan, D.M., The pseudospectral method for third-order differential equations, SIAM J. numer. anal., 29, 6, 1626-1647, (1992) · Zbl 0764.65058
[21] Huang, W.; Sloan, D.M., The pseudospectral method for solving differential eigenvalue problems, J. comput. phys., 111, 399-409, (1994) · Zbl 0799.65091
[22] Orszag, S.A., Accurate solution of the orr – sommerfeld stability equation, J. fluid mech., 50, 689-703, (1971) · Zbl 0237.76027
[23] Roberts, P.H., Electrohydrodynamic convection, Q.J. mech. appl. math., 22, 211-220, (1969) · Zbl 0181.55701
[24] Rosensweig, R., Ferrohydrodynamics, (1985), Cambridge Univ. Press
[25] Schmid, P.J.; Henningson, D.S., Stability and transition in shear flows, (2001), Springer-Verlag · Zbl 0966.76003
[26] Straughan, B., The energy method, stability, and nonlinear convection, (2003), Springer Berlin
[27] Tunbull, R., Electroconvective instability with a stabilizing temperature gradient. I. theory, Phys. fluids, 11, 2588-2596, (1968) · Zbl 0191.26302
[28] Turnbull, R., Electroconvective instability with a stabilizing temperature gradient. II. experimental results, Phys. fluids, 11, 2597-2603, (1968) · Zbl 0191.26302
[29] Trefethen, L.N., Computation of pseudospectra, Acta numer., 247-295, (1999) · Zbl 0945.65039
[30] Weideman, J.A.C.; Reddy, S.C., A MATLAB differentiation matrix suite, ACM trans. math. softw., 26, 465-519, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.