×

zbMATH — the first resource for mathematics

A multidimensional grid-adaptive relativistic magnetofluid code. (English) Zbl 1197.76085
Summary: A robust second order, shock-capturing numerical scheme for multidimensional special relativistic magnetohydrodynamics on computational domains with adaptive mesh refinement is presented. The base solver is a total variation diminishing Lax-Friedrichs scheme in a finite volume setting and is combined with a diffusive approach for controlling magnetic monopole errors. The consistency between the primitive and conservative variables is ensured at all limited reconstructions and the spatial part of the four velocity is used as a primitive variable. Demonstrative relativistic examples are shown to validate the implementation. We recover known exact solutions to relativistic MHD Riemann problems, and simulate the shock-dominated long term evolution of Lorentz factor 7 vortical flows distorting magnetic island chains.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Aloy, M.A.; Ibáñez, J.M.; Martí, J.M.; Müller, E., GENESIS: A high-resolution code for three-dimensional relativistic hydrodynamics, Apjs, 122, 151, (1999)
[2] Anderson, M.; Hirschmann, E.W.; Liebling, S.L.; Neilsen, D., Relativistic MHD with adaptive mesh refinement, Cqgra, 23, 6503, (2006) · Zbl 1133.83343
[3] Anninos, P.; Fragile, P.C.; Salmonson, J.D., Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement, Astrophys. J., 635, 723, (2005)
[4] Balsara, D.S., Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. (suppl. ser.), 132, 83, (2001)
[5] Berger, M.J., Data structures for adaptive grid generation, SIAM J. sci. stat. comput., 7, 904, (1986) · Zbl 0625.65116
[6] Berger, M.J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. comput. phys., 82, 64, (1989) · Zbl 0665.76070
[7] Bergmans, J.; Keppens, R.; van Odyck, D.E.A.; Achterberg, A., Simulations of relativistic astrophysical flows, (), 223 · Zbl 1065.85502
[8] Brio, M.; Wu, C.-C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. comput. phys., 75, 400, (1988) · Zbl 0637.76125
[9] Bryan, G.L.; Norman, M.L.; Stone, J.M.; Cen, R.; Ostriker, J.P., A piecewise parabolic method for cosmological hydrodynamics, Comput. phys. comm., 89, 149, (1995) · Zbl 0923.76200
[10] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. comput. phys., 175, 645, (2002) · Zbl 1059.76040
[11] Del Zanna, L.; Bucciantini, N., An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. hydrodynamics, Astron. astrophys., 390, 1177, (2002) · Zbl 1209.76022
[12] Del Zanna, L.; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. magnetohydrodynamics, Astron. astrophys., 400, 397, (2003) · Zbl 1222.76122
[13] Donat, R.; Font, J.A.; Ibáñez, J.M.; Marquina, A., A flux-split algorithm applied to relativistic flows, J. comput. phys., 146, 58, (1998) · Zbl 0930.76054
[14] Eulderink, F.; Mellema, G., Special relativistic jet collimation by inertial confinement, Astron. astrophys., 284, 654, (1994)
[15] Einfeld, B., On Godunov-type methods for gas dynamics, SIAM J. numer. anal., 25, 294, (1988)
[16] Font, J.A.; Ibáñez, J.M.; Marquina, A.; Martí, J.M., Multidimensional relativistic hydrodynamics: characteristic fields and modern high-resolution shock-capturing schemes, Astron. astrophys., 282, 304, (1994)
[17] Giacomazzo, B.; Rezzolla, L., The exact solution of the Riemann problem in relativistic magnetohydrodynamics, Journal of fluid mechanics, 562, 223, (2006) · Zbl 1097.76073
[18] Giacomazzo, B.; Rezzolla, L., Whiskymhd: a new numerical code for general relativistic magnetohydrodynamics, Cqgra, 24, S235, (2007) · Zbl 1117.83002
[19] Harten, A.; Lax, P.D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 35, (1983) · Zbl 0565.65051
[20] Honkkila, V.; Janhunen, P., HLLC solver for ideal relativistic MHD, J. comput. phys., 223, 643, (2007) · Zbl 1111.76036
[21] Janhunen, P., A positive conservative method for magnetohydrodynamics based on HLL and roe methods, J. comput. phys., 160, 649, (2000) · Zbl 0967.76061
[22] Keppens, R.; Nool, M.; Tóth, G.; Goedbloed, J.P., Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation, Comput. phys. comm., 153, 317, (2003) · Zbl 1196.76055
[23] Keppens, R.; Meliani, Z.; van der Holst, B.; Casse, F., Extragalactic jets with helical magnetic fields: relativistic MHD simulations, Astron. astrophys., 486, 663, (2008)
[24] Komissarov, S.S., A Godunov-type scheme for relativistic magnetohydrodynamics, Mon. not. R. astron. soc., 303, 343, (1999)
[25] Komissarov, S.S., Multi-dimensional numerical scheme for resistive relativistic MHD, Mon. not. R. astron. soc., 382, 995, (2007)
[26] Koldoba, A.V.; Kuznetsov, O.A.; Ustyugova, G.V., An approximate Riemann solver for relativistic magnetohydrodynamics, Mon. not. R. astron. soc., 333, 932, (2002)
[27] Leismann, T.; Antón, L.; Aloy, M.A.; Müller, E.; Martí, J.M.; Miralles, J.A.; Ibáñez, J.M., Relativistic MHD simulations of extragalactic jets, Astron. astrophys., 436, 503, (2005)
[28] Marder, B., A method for incorporating Gauss’ law into electromagnetic PIC codes, J. comput. phys., 68, 48, (1987) · Zbl 0603.65079
[29] Martí, J.M.; Müller, E., Numerical hydrodynamics in special relativity, Living rev. in relativity, 6, 7, (2003) · Zbl 1068.83502
[30] Meliani, Z.; Keppens, R.; Casse, F.; Giannios, D., AMRVAC and relativistic hydrodynamic simulations for gamma-ray burst afterglow phases, Mon. not. R. astron. soc., 376, 1189, (2007)
[31] Mignone, A.; Bodo, G., An HLLC Riemann solver for relativistic flows. I. hydrodynamics, Mon. not. R. astron. soc., 364, 126, (2005)
[32] Mignone, A.; Bodo, G., An HLLC Riemann solver for relativistic flows. II. magnetohydrodynamics, Mon. not. R. astron. soc., 368, 1040, (2006)
[33] Mignone, A.; Bodo, G.; Massaglia, S.; Matsakos, T.; Tesileanu, O.; Zanni, C.; Ferrari, A., PLUTO: A numerical code for computational astrophysics, Astrophys. J. (suppl. ser.), 170, 228, (2007)
[34] Munz, C.-D.; Omnes, P.; Shneider, R.; Sonnendrücker, E.; Voss, U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. comput. phys., 161, 484, (2000) · Zbl 0970.78010
[35] Picone, J.M.; Dahlburg, R.B., Evolution of the orszag-Tang vortex system in a compressible medium. II. supersonic flow, Phys. fluids B, 3, 29, (1991)
[36] Powell, K.G.; Roe, P.L.; Linde, T.J.; Gombosi, T.I.; de Zeeuw, D.L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. comput. phys., 154, 284, (1999) · Zbl 0952.76045
[37] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P., Numerical recipes in Fortran, (1992), Cambridge Univ. Press Cambridge · Zbl 0778.65002
[38] Ryu, D.; Ostriker, J.P.; Kang, H.; Cen, R., A cosmological hydrodynamic code based on the total variation diminishing scheme, Astrophys. J., 414, 1, (1993)
[39] Sovinec, C.R.; Glasser, A.H.; Gianakon, T.A.; Barnes, D.C.; Nebel, R.A.; Kruger, S.E.; Schnack, D.D.; Plimpton, S.J.; Tarditi, A.; Chu, M.S., Nonlinear magnetohydrodynamics simulation using high-order finite elements, J. comput. phys., 195, 355, (2004) · Zbl 1087.76070
[40] Tóth, G., The \(\operatorname{\nabla} \cdot \mathbf{B} = 0\) constraint in shock-capturing magnetohydrodynamics codes, J. comput. phys., 161, 605, (2000)
[41] Tóth, G.; Odstrčil, D., Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. comput. phys., 128, 82, (1996) · Zbl 0860.76061
[42] van der Holst, B.; Keppens, R., Hybrid block-AMR in Cartesian and curvilinear coordinates: MHD applications, J. comput. phys., 226, 925, (2007) · Zbl 1310.76133
[43] Wang, P.; Abel, T.; Zhang, W., Relativistic hydrodynamic flows using spatial and temporal adaptive structured mesh refinement, (2007)
[44] Zhang, W.; MacFadyen, A.I., RAM: A relativistic adaptive mesh refinement hydrodynamics code, Apjs, 164, 255, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.