×

zbMATH — the first resource for mathematics

Direct numerical simulation of hypersonic turbulent boundary layers. II: Effect of wall temperature. (English) Zbl 1197.76078
Summary: We perform direct numerical simulation (DNS) of turbulent boundary layers at Mach 5 with the ratio of wall-to-edge temperature \(T_{w}/T_{\delta }\) from 1.0 to 5.4 (Cases M5T1 to M5T5). The influence of wall cooling on Morkovin’s scaling, Walz’s equation, the standard and modified strong Reynolds analogies, turbulent kinetic energy budgets, compressibility effects and near-wall coherent structures is assessed. We find that many of the scaling relations used to express adiabatic compressible boundary-layer statistics in terms of incompressible boundary layers also hold for non-adiabatic cases. Compressibility effects are enhanced by wall cooling but remain insignificant, and the turbulence dissipation remains primarily solenoidal. Moreover, the variation of near-wall streaks, iso-surface of the swirl strength and hairpin packets with wall temperature demonstrates that cooling the wall increases the coherency of turbulent structures. We present the mechanism by which wall cooling enhances the coherence of turbulence structures, and we provide an explanation of why this mechanism does not represent an exception to the weakly compressible hypothesis.
For part I, cf. M. P. Martin [J. Fluid Mech. 570, 347–364 (2007; Zbl 1105.76031)].

MSC:
76K05 Hypersonic flows
76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Walz, Boundary Layers of Flow and Temperature (1969)
[2] DOI: 10.1063/1.1758218 · Zbl 1186.76582 · doi:10.1063/1.1758218
[3] Smits, Turbulent Shear Layers in Supersonic Flow (2006)
[4] DOI: 10.1098/rsta.1991.0067 · Zbl 0731.76034 · doi:10.1098/rsta.1991.0067
[5] DOI: 10.1146/annurev.fl.26.010194.001235 · doi:10.1146/annurev.fl.26.010194.001235
[6] DOI: 10.1017/S0022112067001740 · doi:10.1017/S0022112067001740
[7] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[8] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[9] DOI: 10.1017/S0022112095004599 · Zbl 0857.76036 · doi:10.1017/S0022112095004599
[10] DOI: 10.1017/S0022112006009244 · Zbl 1093.76510 · doi:10.1017/S0022112006009244
[11] DOI: 10.2514/3.6323 · doi:10.2514/3.6323
[12] DOI: 10.1017/S0022112000008466 · Zbl 0983.76039 · doi:10.1017/S0022112000008466
[13] van Driest, Aeronaut. Engng Rev. 15 pp 26– (1956)
[14] DOI: 10.1016/0017-9310(87)90010-X · Zbl 0623.76068 · doi:10.1016/0017-9310(87)90010-X
[15] DOI: 10.1017/S0022112095004587 · Zbl 0960.76517 · doi:10.1017/S0022112095004587
[16] Cebeci, Analysis of Turbulent Boundary Layers (1974) · Zbl 0342.76014
[17] Gatski, New Tools in Turbulence Modelling (1997)
[18] DOI: 10.1063/1.861737 · doi:10.1063/1.861737
[19] DOI: 10.1146/annurev.fl.09.010177.000341 · doi:10.1146/annurev.fl.09.010177.000341
[20] DOI: 10.1063/1.1762382 · doi:10.1063/1.1762382
[21] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[22] DOI: 10.1017/S0022112007009020 · Zbl 1159.76342 · doi:10.1017/S0022112007009020
[23] DOI: 10.1063/1.1637604 · Zbl 1186.76423 · doi:10.1063/1.1637604
[24] DOI: 10.1080/14685240902852701 · doi:10.1080/14685240902852701
[25] Morkovin, Mécanique de la Turbulence pp 367– (1962)
[26] DOI: 10.1017/S0022112003007705 · Zbl 1134.76363 · doi:10.1017/S0022112003007705
[27] DOI: 10.1017/S0022112006003107 · Zbl 1105.76031 · doi:10.1017/S0022112006003107
[28] DOI: 10.1017/S0022112000002718 · Zbl 1007.76031 · doi:10.1017/S0022112000002718
[29] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
[30] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.