×

zbMATH — the first resource for mathematics

Turbulent boundary layers and channels at moderate Reynolds numbers. (English) Zbl 1197.76063
Summary: The behaviour of the velocity and pressure fluctuations in the outer layers of wall-bounded turbulent flows is analysed by comparing a new simulation of the zero-pressure-gradient boundary layer with older simulations of channels. The 99 % boundary-layer thickness is used as a reasonable analogue of the channel half-width, but the two flows are found to be too different for the analogy to be complete. In agreement with previous results, it is found that the fluctuations of the transverse velocities and of the pressure are stronger in the boundary layer, and this is traced to the pressure fluctuations induced in the outer intermittent layer by the differences between the potential and rotational flow regions. The same effect is also shown to be responsible for the stronger wake component of the mean velocity profile in external flows, whose increased energy production is the ultimate reason for the stronger fluctuations. Contrary to some previous results by our group, and by others, the streamwise velocity fluctuations are also found to be higher in boundary layers, although the effect is weaker. Within the limitations of the non-parallel nature of the boundary layer, the wall-parallel scales of all the fluctuations are similar in both the flows, suggesting that the scale-selection mechanism resides just below the intermittent region, \(y/\delta = 0.3-0.5\). This is also the location of the largest differences in the intensities, although the limited Reynolds number of the boundary-layer simulation \((Re_{\theta} \approx 2000)\) prevents firm conclusions on the scaling of this location. The statistics of the new boundary layer are available from http://torroja.dmt.upm.es/ftp/blayers/.

MSC:
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112077001554 · Zbl 0358.76042 · doi:10.1017/S0022112077001554
[2] Buschmann, Turbulence, Heat and Mass Transfer 6 pp 1– (2009)
[3] DOI: 10.1017/S0022112001006759 · Zbl 1156.76397 · doi:10.1017/S0022112001006759
[4] DOI: 10.1017/S0022112082002080 · doi:10.1017/S0022112082002080
[5] Batchelor, The Theory of Homogeneous Turbulence pp 45– (1953) · Zbl 0053.14404
[6] DOI: 10.1017/S002211209200154X · doi:10.1017/S002211209200154X
[7] DOI: 10.1017/S002211200700777X · Zbl 1141.76316 · doi:10.1017/S002211200700777X
[8] DOI: 10.1017/S0022112006000814 · Zbl 1157.76346 · doi:10.1017/S0022112006000814
[9] DOI: 10.1017/S0022112009007423 · Zbl 1183.76036 · doi:10.1017/S0022112009007423
[10] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[11] DOI: 10.1006/jcph.1998.5882 · Zbl 0936.76026 · doi:10.1006/jcph.1998.5882
[12] DOI: 10.1017/S0022112009991029 · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[13] DOI: 10.1017/S0022112007006465 · Zbl 1175.76078 · doi:10.1017/S0022112007006465
[14] DOI: 10.1063/1.1570830 · Zbl 1186.76136 · doi:10.1063/1.1570830
[15] DOI: 10.1017/S0022112070000629 · doi:10.1017/S0022112070000629
[16] DOI: 10.1017/S0022112099008976 · Zbl 0959.76035 · doi:10.1017/S0022112099008976
[17] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[18] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
[19] DOI: 10.1016/0021-9991(85)90148-2 · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[20] Kim, J. Fluid Mech. 239 pp 157– (1989)
[21] DOI: 10.1007/s00162-004-0149-x · Zbl 1148.76320 · doi:10.1007/s00162-004-0149-x
[22] DOI: 10.1017/S0022112093002393 · Zbl 0800.76156 · doi:10.1017/S0022112093002393
[23] DOI: 10.1017/S0022112070000630 · doi:10.1017/S0022112070000630
[24] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[25] Jiménez, J. Fluid Mech. 611 pp 215– (2008)
[26] DOI: 10.1017/S0022112009006600 · Zbl 1181.76015 · doi:10.1017/S0022112009006600
[27] DOI: 10.2514/1.17638 · doi:10.2514/1.17638
[28] DOI: 10.1017/S0022112072000515 · doi:10.1017/S0022112072000515
[29] DOI: 10.1063/1.3005862 · Zbl 1182.76330 · doi:10.1063/1.3005862
[30] DOI: 10.1017/S0022112007006076 · Zbl 1122.76044 · doi:10.1017/S0022112007006076
[31] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[32] DOI: 10.1016/j.ijheatfluidflow.2004.02.016 · doi:10.1016/j.ijheatfluidflow.2004.02.016
[33] Hinze, Turbulence pp 61– (1975)
[34] DOI: 10.1017/S002211209300120X · doi:10.1017/S002211209300120X
[35] DOI: 10.1017/S0022112074001844 · doi:10.1017/S0022112074001844
[36] DOI: 10.1016/0021-9991(91)90238-G · Zbl 0726.76074 · doi:10.1016/0021-9991(91)90238-G
[37] DOI: 10.1063/1.3247176 · Zbl 1183.76494 · doi:10.1063/1.3247176
[38] DOI: 10.1109/PROC.1978.10837 · doi:10.1109/PROC.1978.10837
[39] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509 · doi:10.1017/S0022112000001713
[40] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[41] DOI: 10.1017/S0022112007008506 · Zbl 1125.76347 · doi:10.1017/S0022112007008506
[42] DOI: 10.1017/S0022112002002173 · Zbl 1026.76029 · doi:10.1017/S0022112002002173
[43] DOI: 10.1017/S0022112066000363 · doi:10.1017/S0022112066000363
[44] DOI: 10.1063/1.1482377 · Zbl 1185.76346 · doi:10.1063/1.1482377
[45] DOI: 10.1017/S0022112005006440 · Zbl 1080.76060 · doi:10.1017/S0022112005006440
[46] DOI: 10.1016/j.jcp.2009.02.031 · Zbl 1273.76009 · doi:10.1016/j.jcp.2009.02.031
[47] DOI: 10.1063/1.858179 · doi:10.1063/1.858179
[48] DOI: 10.1017/S0022112091000691 · doi:10.1017/S0022112091000691
[49] DOI: 10.1063/1.3139294 · Zbl 1183.76457 · doi:10.1063/1.3139294
[50] DOI: 10.1017/S0022112083003389 · doi:10.1017/S0022112083003389
[51] DOI: 10.1017/S0022112097008057 · Zbl 0908.76039 · doi:10.1017/S0022112097008057
[52] Pope, Turbulent Flows pp 506– (2000) · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[53] DOI: 10.1006/jcph.1993.1162 · Zbl 0778.76064 · doi:10.1006/jcph.1993.1162
[54] DOI: 10.1063/1.2781596 · Zbl 1182.76562 · doi:10.1063/1.2781596
[55] DOI: 10.1016/S0021-9991(03)00322-X · Zbl 1051.76030 · doi:10.1016/S0021-9991(03)00322-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.