×

zbMATH — the first resource for mathematics

Optimal wave packets in a boundary layer and initial phases of a turbulent spot. (English) Zbl 1197.76045
Summary: The three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long - but finite - streamwise dimension. The localized optimal initial perturbation is characterized by a pair of streamwise-modulated counter-rotating vortices, tilted upstream, yielding at the optimal time elongated streaks of alternating sign in the streamwise direction. This indicates that perturbations with non-zero streamwise wavenumber have a role in the transient dynamics of a boundary layer. A scaling law is provided, describing the variation of the streamwise modulation of the optimal initial perturbation with respect to the streamwise domain length and to the Reynolds number. For spanwise-extended domains, a near-optimal three-dimensional perturbation is extracted during the optimization process; it is localized also in the spanwise direction, resulting in a wave packet of elongated disturbances modulated in the spanwise and streamwise directions. The nonlinear evolution of the optimal and near-optimal perturbations is investigated by means of direct numerical simulations. Both perturbations are found to induce transition at lower levels of the initial energy than local optimal and suboptimal perturbations. Moreover, it is observed that transition occurs in a well-defined region of the convected wave packet, close to its centre, via a mechanism including at the same time oscillations of the streaks of both quasi-sinuous and quasi-varicose nature. Hairpin vortices are observed before transition; they have an active role in the breakdown of the streaks and result in a turbulent spot which spreads out in the boundary layer.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
Software:
ARPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[2] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[3] Briggs, Electron-Stream Interaction with Plasma (1964)
[4] Sommerfeld, Proceedings of the 4th International Congress of Mathematicians, III pp 116– (1908)
[5] DOI: 10.1017/S0022112090003391 · doi:10.1017/S0022112090003391
[6] DOI: 10.1063/1.868804 · Zbl 1023.76556 · doi:10.1063/1.868804
[7] DOI: 10.1017/S0022112097005417 · doi:10.1017/S0022112097005417
[8] DOI: 10.1017/S0022112004000941 · Zbl 1131.76326 · doi:10.1017/S0022112004000941
[9] DOI: 10.1017/S002211200100667X · Zbl 1141.76408 · doi:10.1017/S002211200100667X
[10] Schmid, Stability and Transition in Shear Fows (2001) · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[11] DOI: 10.1063/1.874049 · doi:10.1063/1.874049
[12] DOI: 10.1017/S0022112088003295 · doi:10.1017/S0022112088003295
[13] DOI: 10.1080/10407799008944952 · doi:10.1080/10407799008944952
[14] DOI: 10.1017/S0022112081002966 · doi:10.1017/S0022112081002966
[15] DOI: 10.1017/S0022112007009536 · Zbl 1131.76026 · doi:10.1017/S0022112007009536
[16] DOI: 10.1098/rsta.2008.0191 · Zbl 1221.76094 · doi:10.1098/rsta.2008.0191
[17] Orr, Proc. R. Ir. Acad. A 27 pp 9– (1907)
[18] Bers, Handbook of Plasma Physics pp 451– (1983)
[19] DOI: 10.1017/S0022112000002810 · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[20] DOI: 10.1017/S0022112084002676 · doi:10.1017/S0022112084002676
[21] DOI: 10.1017/S0022112009007708 · Zbl 1181.76083 · doi:10.1017/S0022112009007708
[22] Bakchinov, Sibirskii Fiz.-Tekh. Z. 4 pp 39– (1992)
[23] DOI: 10.1063/1.1683170 · Zbl 1186.76340 · doi:10.1063/1.1683170
[24] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[25] DOI: 10.1017/S0022112091003130 · Zbl 0850.76256 · doi:10.1017/S0022112091003130
[26] DOI: 10.1063/1.2804958 · Zbl 1182.76019 · doi:10.1063/1.2804958
[27] DOI: 10.1017/S0022112099007259 · Zbl 0959.76022 · doi:10.1017/S0022112099007259
[28] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
[29] Lehoucq, ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (1997)
[30] DOI: 10.1017/S0022112090002105 · Zbl 0695.76027 · doi:10.1017/S0022112090002105
[31] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[32] DOI: 10.1146/annurev.fl.22.010190.002353 · doi:10.1146/annurev.fl.22.010190.002353
[33] DOI: 10.1063/1.866067 · doi:10.1063/1.866067
[34] DOI: 10.1017/S0022112093001429 · Zbl 0773.76030 · doi:10.1017/S0022112093001429
[35] DOI: 10.1017/S0022112081001791 · doi:10.1017/S0022112081001791
[36] DOI: 10.1098/rspa.1975.0208 · doi:10.1098/rspa.1975.0208
[37] Gad-el Hak, J. Aeronaut. Sci. 110 pp 73– (1981)
[38] DOI: 10.1063/1.866609 · doi:10.1063/1.866609
[39] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[40] Emmons, J. Aeronaut. Sci. 18 pp 490– (1951) · doi:10.2514/8.2010
[41] Zuccher, Eur. J. Mech. B/Fluids 513 pp 135– (2004) · Zbl 1107.76032 · doi:10.1017/S0022112004000011
[42] DOI: 10.1063/1.870287 · Zbl 1149.76349 · doi:10.1063/1.870287
[43] DOI: 10.1017/S0022112076002747 · doi:10.1017/S0022112076002747
[44] DOI: 10.1017/S0022112091002185 · doi:10.1017/S0022112091002185
[45] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[46] DOI: 10.1063/1.864276 · doi:10.1063/1.864276
[47] DOI: 10.1006/jcph.1996.0033 · Zbl 0849.76055 · doi:10.1006/jcph.1996.0033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.