×

zbMATH — the first resource for mathematics

Nonlinear viscoelastic solids – a review. (English) Zbl 1197.74021
Summary: Elastomers and soft biological tissues can undergo large deformations and exhibit time dependent behavior that is characteristic of nonlinear viscoelastic solids. This article is intended to provide an overview of the subject of nonlinear viscoelastic solids for researchers who are interested in studying the mechanics of these materials. The article begins with a review of topics from linear viscoelasticity that are pertinent to the understanding of nonlinear viscoelastic behavior. It then discusses the topics that enter into the formulation of constitutive equations for isotropic, transversely isotropic and orthotropic nonlinear viscoelastic solids. A number of specific forms of constitutive equations have been proposed in the literature and these are discussed. Attention is restricted to constitutive equations that are phenomenological rather than molecular in origin. The emphasis is then on nonlinear single integral finite linear viscoelastic and Pipkin-Rogers constitutive equations, the latter containing the quasi-linear viscoelastic model used in biomechanics of soft tissue. Expressions for the Pipkin-Rogers model are provided for isotropy, transverse isotropy and orthotropy.
The constitutive equations are then applied to the description of homogeneous triaxial stretch and simple shear histories. The special case of uniaxial stretch histories is analyzed in detail. There is a discussion of the deviation from linear behavior as nonlinear effects become important. Non-homogeneous deformations are considered next. The combined tension and torsion of a solid cylinder on an incompressible, isotropic nonlinear viscoelastic solid is discussed in detail because of its importance in experiments involving viscoelastic materials. A large number of solutions to boundary value problems have appeared in the literature and many of these are summarized. The article concludes with comments about interesting topics for further research.

MSC:
74D10 Nonlinear constitutive equations for materials with memory
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Findley, W.N., Creep and Relaxation of Nonlinear Viscoelastic Materials (1989)
[2] Lockett, F.J., Nonlinear Viscoelastic Solids (1972) · Zbl 0333.73034
[3] Morman, K.N., Jr., Proceedings of the Second Symposium on Analysis and Design of Rubber Parts
[4] Schapery, R.A., International Journal of Solids and Structures 37 pp 359– (2000) · Zbl 1075.74025 · doi:10.1016/S0020-7683(99)00099-2
[5] Drapaca, C.S., Mathematics and Mechanics of Solids 12 pp 475– (2007) · Zbl 1419.74069 · doi:10.1177/1081286506062450
[6] Wineman, A.S., Mechanical Response of Polymers, An Introduction (2000)
[7] Stouffer, D.C., Acta Mechanica 13 pp 30– (1972) · Zbl 0245.73027 · doi:10.1007/BF01179657
[8] Gurtin, M.E., Archive for Rational Mechanics and Analysis 11 pp 291– (1962) · Zbl 0107.41007 · doi:10.1007/BF00253942
[9] Spencer. A.J.M., Continuum Mechanics (1980) · Zbl 0427.73001
[10] Atkin, R.J., An Introduction to the Theory of Elasticity (1980) · Zbl 0449.73004
[11] Ogden, R.W., Nonlinear Elastic Deformations (1984) · Zbl 0541.73044
[12] Noll, W., Archive for Rational Mechanics and Analysis 2 pp 197– (1958) · Zbl 0083.39303 · doi:10.1007/BF00277929
[13] Truesdell, C., The Non-linear Field Theories of Mechanics, Handbuch der Physik, III/3 (1965)
[14] Green, A.E., Archive for Rational Mechanics and Analysis 1 pp 1– (1957) · Zbl 0079.17602 · doi:10.1007/BF00297992
[15] Coleman, B., Reviews of Modern Physics 33 pp 239– (1961) · Zbl 0103.40804 · doi:10.1103/RevModPhys.33.239
[16] Pipkin, A.C., Journal of the Mechanics and Physics of Solids 16 pp 59– (1968) · Zbl 0158.43601 · doi:10.1016/0022-5096(68)90016-1
[17] Fung, Y.C., Biomechanics: Mechanical Properties of Living Tissues (1981) · doi:10.1007/978-1-4757-1752-5
[18] Spencer, A.J.M. Theory of Invariants, in: Continuum Physics, Vol. I, pp. 259-353, ed. A. C. Eringen, Academic, New York, 1971. · doi:10.1016/B978-0-12-240801-4.50008-X
[19] Rivlin, R.S., Journal of Rational Mechanics and Analysis 4 pp 323– (1955)
[20] McGuirt, C.W., Transactions of the Society of Rheology 14 pp 117– (1970) · Zbl 0385.73028 · doi:10.1122/1.549182
[21] Kaye, A., College of Aeronautics Note No. 134 (1962)
[22] Bernstein, B., Transactions of the Society of Rheology 7 pp 391– (1963) · Zbl 0139.42701 · doi:10.1122/1.548963
[23] Rajagopal, K.R., Mathematics and Mechanics of Solids
[24] Knauss. W.G., Polymer Engineering and Science 27 pp 86– (1987) · doi:10.1002/pen.760270113
[25] Shay, R.M. , Jr., Journal of Rheology 30 pp 781– (1986) · Zbl 0594.73042 · doi:10.1122/1.549869
[26] McKenna, G.B., Journal of Rheology 23 pp 151– (1979) · doi:10.1122/1.549522
[27] Popelar, C.F., Mechanics of Time Dependent Materials 7 pp 89– (2004) · doi:10.1023/A:1025625430093
[28] Caruthers, J.M., Polymer 45 pp 4577– (2004) · doi:10.1016/j.polymer.2004.04.021
[29] Linz, P., Analytical and Numerical Methods for Volterra Equations (1985) · Zbl 0566.65094 · doi:10.1137/1.9781611970852
[30] Brunner, H., The Numerical Solution of Volterra Equations (1986) · Zbl 0634.65143
[31] Lee, E.H., Journal of Applied Mechanics 30 pp 127– (1963) · doi:10.1115/1.3630057
[32] Rogers, T.G., Quarterly of Applied Mathematics 22 pp 117– (1964) · Zbl 0126.40903 · doi:10.1090/qam/167050
[33] Lee, E.H., Journal of the American Ceramic Society 48 pp 480– (1965) · doi:10.1111/j.1151-2916.1965.tb14805.x
[34] Smart, J., Journal of the Mechanics and Physics of Solids 20 pp 313– (1972) · Zbl 0256.73016 · doi:10.1016/0022-5096(72)90027-0
[35] Goldberg, W., Journal of Applied Mechanics 35 pp 433– (1968) · doi:10.1115/1.3601232
[36] Morman, K.N., Jr., Finite element analysis of viscoelastic elastomeric structures vibrating about non-linear statically stressed configurations (1981)
[37] Morman, K.N., Jr., International Journal for Numerical Methods in Engineering 198 pp 1079– (1983) · Zbl 0509.73088 · doi:10.1002/nme.1620190712
[38] Rivlin, R.S., Proceedings of the Rubber Technology Conference
[39] Carroll, M.M., International Journal of Engineering Science 5 pp 515– (1967) · doi:10.1016/0020-7225(67)90038-9
[40] Carroll, M.M., Quarterly Journal of Mechanics and Applied Mathematics 21 pp 147– (1968) · Zbl 0159.27505 · doi:10.1093/qjmam/21.2.147
[41] Fosdick, R.L., Archive for Rational Mechanics and Analysis 29 pp 272– (1968) · Zbl 0164.27305 · doi:10.1007/BF00276728
[42] Yuan, H.-L., Transactions of the Society of Rheology 16 pp 615– (1972) · doi:10.1122/1.549266
[43] Rogers. T.G., Proceedings of the U.S. National Congress of Applied Mechanics
[44] Wineman, A.S., International Journal of Solids and Structures 8 pp 775– (1972) · Zbl 0263.73045 · doi:10.1016/0020-7683(72)90042-X
[45] Wineman, A.S., Journal of Applied Mechanics 39 pp 946– (1972) · doi:10.1115/1.3422896
[46] Wineman, A.S., Transactions of the Society of Rheology 20 pp 203– (1976) · Zbl 0388.73066 · doi:10.1122/1.549410
[47] Feng, W.W., Journal of Applied Mechanics 59 pp 529– (1992)
[48] Wineman, A.S., Combined drape and vacuum forming of an axisymmetric viscoelastic membrane. Proceedings of the 14th Annul Meeting of the Society of Engineering Science (1977)
[49] Wineman, A.S., Journal of Non-Newtonian Fluid Mechanics 6 pp 111– (1979) · doi:10.1016/0377-0257(79)87009-3
[50] Wineman, A.S., International Journal of Solids and Structures 14 pp 197– (1978) · Zbl 0372.73073 · doi:10.1016/0020-7683(78)90025-2
[51] Wineman, A.S., Computers and Mathematics with Applications 53 pp 168– (2007) · Zbl 1129.74025 · doi:10.1016/j.camwa.2006.02.017
[52] Lee, S.B., International Journal of Non-Linear Mechanics 34 pp 779– (1999) · Zbl 1068.74572 · doi:10.1016/S0020-7462(98)00003-1
[53] Lee, S.B., Acta Mechanica 135 pp 199– (1999) · Zbl 0962.74013 · doi:10.1007/BF01305752
[54] Lee, S.B., International Journal of Non-Linear Mechanics 35 pp 177– (2000) · Zbl 1068.74573 · doi:10.1016/S0020-7462(98)00061-4
[55] Wineman, A., International Journal of Mechanical Sciences 40 pp 1295– (1998) · Zbl 0961.74505 · doi:10.1016/S0020-7403(98)00023-X
[56] Morman, K.N., Jr., Stress and dynamic analysis of a bonded, non-linear viscoelastic cylindrical block (1978)
[57] Dai, F., International Journal of Solids and Structures 29 pp 911– (1992) · Zbl 0825.73201 · doi:10.1016/0020-7683(92)90025-O
[58] Wineman, A.S., Journal of Rheology 39 pp 401– (1995) · doi:10.1122/1.550704
[59] Waldron, W.K., Jr., International Journal of Non-Linear Mechanics 31 pp 345– (1996) · Zbl 0863.73023 · doi:10.1016/0020-7462(95)00059-3
[60] Fosdick, R., International Journal of Solids and Structures 35 pp 403– (1998) · Zbl 0917.73027 · doi:10.1016/S0020-7683(97)00033-4
[61] Fosdick, R., International Journal of Non-Linear Mechanics 33 pp 447– (1998) · Zbl 0907.70013 · doi:10.1016/S0020-7462(97)00021-8
[62] Franceschini, G., International Journal of Engineering Science 39 pp 1013– (2001) · doi:10.1016/S0020-7225(00)00087-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.