zbMATH — the first resource for mathematics

Bootstrap in functional linear regression. (English) Zbl 1197.62068
Summary: We have considered a functional linear model with scalar response and functional explanatory variable. One of the most popular methodologies for estimating the model parameters is based on functional principal components analysis (FPCA). In recent literature, weak convergence for a wide class of FPCA-type estimates has been proved, and consequently asymptotic confidence sets can be built. We have proposed an alternative approach in order to obtain pointwise confidence intervals by means of a bootstrap procedure, for which we have obtained its asymptotic validity. Besides, a simulation study allows us to compare the practical behaviour of asymptotic and bootstrap confidence intervals in terms of coverage rates for different sample sizes.

62H25 Factor analysis and principal components; correspondence analysis
62G09 Nonparametric statistical resampling methods
62G20 Asymptotic properties of nonparametric inference
65C60 Computational problems in statistics (MSC2010)
62F40 Bootstrap, jackknife and other resampling methods
fda (R)
Full Text: DOI
[1] Bickel, P.J.; Freedman, D.A., Some asymptotic theory for the bootstrap, Ann. statist., 9, 1196-1217, (1981) · Zbl 0449.62034
[2] Cai, T.T.; Hall, P., Prediction in functional linear regression, Ann. statist., 34, 2159-2179, (2006) · Zbl 1106.62036
[3] Cao-Abad, R., Rate of convergence for the wild bootstrap in nonparametric regression, Ann. statist., 19, 2226-2231, (1991) · Zbl 0745.62038
[4] Cardot, H.; Ferraty, F.; Sarda, P., Functional linear model, Statist. probab. lett., 45, 11-22, (1999) · Zbl 0962.62081
[5] Cardot, H.; Ferraty, F.; Sarda, P., Spline estimators for the functional linear model, Statist. sinica, 13, 571-591, (2003) · Zbl 1050.62041
[6] Cardot, H.; Mas, A.; Sarda, P., Clt in functional linear regression models, Probab. theory related fields, 138, 325-361, (2007) · Zbl 1113.60025
[7] Efron, B., Bootstrap methods: another look at the jackknife, Ann. statist., 7, 1-26, (1979) · Zbl 0406.62024
[8] Ferraty, F.; Mas, A.; Vieu, P., Nonparametric regression on functional data: inference and practical aspects, Aust. N. Z. J. statist., 49, 267-286, (2007) · Zbl 1136.62031
[9] Ferraty, F.; Van Keilegom, I.; Vieu, P., On the validity of the bootstrap in nonparametric functional regression, Scand. J. statist., 37, 286-306, (2010) · Zbl 1223.62042
[10] Ferraty, F.; Vieu, P., Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination, J. nonparametr. statist., 16, 111-125, (2004) · Zbl 1049.62039
[11] Ferraty, F.; Vieu, P., Nonparametric functional data analysis: theory and practice, (2006), Springer New York · Zbl 1119.62046
[12] Freedman, D.A., Bootstrapping regression models, Ann. statist., 9, 1218-1228, (1981) · Zbl 0449.62046
[13] González-Manteiga, W.; Martínez-Miranda, M.D.; Pérez-González, A., The choice of smoothing parameter in nonparametric regression through wild bootstrap, Comput. statist. data anal., 47, 487-515, (2004) · Zbl 1429.62139
[14] Hall, P., Theoretical comparison of bootstrap confidence intervals, Ann. statist., 16, 927-953, (1988) · Zbl 0663.62046
[15] Hall, P.; Horowitz, J.L., Methodology and convergence rates for functional linear regression, Ann. statist., 35, 70-91, (2007) · Zbl 1114.62048
[16] Hall, P.; Hosseini-Nasab, M., On properties of functional principal components analysis, J. roy. statist. soc. ser. B, 68, 109-126, (2006) · Zbl 1141.62048
[17] Mammen, E., Resampling methods for nonparametric regression, () · Zbl 0980.62031
[18] Martínez-Calvo, A., Presmoothing in functional linear regression, (), 223-229
[19] Ramsay, J.O.; Silverman, B.W., Functional data analysis, (1997), Springer New York · Zbl 0882.62002
[20] Ramsay, J.O.; Silverman, B.W., Applied functional data analysis, () · Zbl 1011.62002
[21] Ramsay, J.O.; Silverman, B.W., Functional data analysis, (2005), Springer New York · Zbl 0882.62002
[22] Singh, K., On the asymptotic accuracy of Efron’s bootstrap, Ann. statist., 9, 1187-1195, (1981) · Zbl 0494.62048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.