×

zbMATH — the first resource for mathematics

Fixed point and common fixed point theorems on ordered cone metric spaces. (English) Zbl 1197.54052
Summary: Some fixed point and common fixed point theorems for self-maps on ordered cone metric spaces, where the cone is not necessarily normal, are proved.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Huang, L.G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. math. anal. appl., 332, 1468-1476, (2007) · Zbl 1118.54022
[2] Ilić, D.; Rakočević, V., Common fixed points for maps on cone metric space, J. math. anal. appl., 341, 876-882, (2008) · Zbl 1156.54023
[3] Rezapour, Sh.; Hamlbarani, R., Some notes on the paper “cone metric spaces and fixed point theorems of contractive mappings”, J. math. anal. appl., 345, 719-724, (2008) · Zbl 1145.54045
[4] Abbas, M.; Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. math. anal. appl., 341, 416-420, (2008) · Zbl 1147.54022
[5] Abbas, M.; Rhoades, B.E., Fixed and periodic point results in cone metric spaces, Appl. math. lett., 22, 511-515, (2008) · Zbl 1167.54014
[6] Altun, I.; Durmaz, G., Some fixed point theorems on ordered cone metric spaces, Rend. circ. mat. Palermo, 58, 319-325, (2009) · Zbl 1184.54038
[7] Arshad, M.; Azam, A.; Vetro, P., Some common fixed point results on cone metric spaces, Fixed point theory appl., 11, (2009), Article ID 493965 · Zbl 1167.54313
[8] Azam, A.; Arshad, M.; Beg, I., Common fixed points of two maps in cone metric spaces, Rend. circ. mat. Palermo, 57, 433-441, (2008) · Zbl 1197.54056
[9] Di Bari, C.; Vetro, P., \(\varphi\)-pairs and common fixed points in cone metric spaces, Rend. circ. mat. Palermo, 57, 279-285, (2008) · Zbl 1164.54031
[10] Haghi, R.H.; Rezapour, Sh., Fixed points of multifunctions on regular cone metric spaces, Expo. math., (2009) · Zbl 1171.54033
[11] Ilić, D.; Rakočević, V., Quasi-conraction on cone metric spaces, Appl. math. lett., 22, 5, 728-731, (2009) · Zbl 1179.54060
[12] Jungck, G.; Radenović, S.; Radojević, S.; Rakočević, V., Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed point theory appl., 2009, 13, (2009), Article ID 643840 · Zbl 1190.54032
[13] Klim, D.; Wardowski, D., Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces, Nonlinear anal., 71, 5170-5175, (2009) · Zbl 1203.54042
[14] P. Raja, S.M. Vaezpour, Some extensions of Banach’s contraction principle in complete cone metric spaces, Fixed Point Theory Appl. 2008, 11. Article ID 768294 doi:10.1155/2008/768294 · Zbl 1148.54339
[15] Rezapour, Sh.; Hagli, R.H., Fixed point of multifunctions on cone metric spaces, Numer. funct. anal. opt., 30, 7-8, 1-8, (2009)
[16] Vetro, P., Common fixed points in cone metric spaces, Rend. circ. mat. Palermo, 56, 3, 464-468, (2007) · Zbl 1196.54086
[17] Wardowski, D., Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear anal., 71, 1-2, 512-516, (2009) · Zbl 1169.54023
[18] Włodarczyk, K.; Plebaniak, R.; Obczyński, C., Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear anal., (2009)
[19] Ran, A.C.M.; Reuring, M.C.B., A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. amer. math. soc., 132, 1435-1443, (2004) · Zbl 1060.47056
[20] Nieto, J.J.; Lopez, R.R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation, Order, 22, 223-239, (2005) · Zbl 1095.47013
[21] Agarwal, R.P.; El-Gebeily, M.A.; O’Regan, D., Generalized contractions in partially ordered metric spaces, Appl. anal., 87, 1, 109-116, (2008) · Zbl 1140.47042
[22] Nieto, J.J.; Lopez, R.R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta math. sin. (English ser.), 23, 12, 2205-2212, (2007) · Zbl 1140.47045
[23] O’Regan, D.; Petruşel, A., Fixed point theorems for generalized contractions in ordered metric spaces, J. math. anal. appl., 341, 1241-1252, (2008) · Zbl 1142.47033
[24] Lakshmikantham, V.; Ćirić, Lj., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear anal., 70, 12, 4341-4349, (2009) · Zbl 1176.54032
[25] Wang, C.; Zhu, Jinghao; Damjanović, B.; Hu, Liang-gen, Approximating fixed points of a pair of contractive type mappings in generalized convex metric spaces, Appl. math. comput., (2009) · Zbl 1182.65083
[26] L. Ćirić, A.N. Cakić, M. Rajović, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008, 11. Article ID 131294
[27] Deimling, K., Nonlinear functional analysis, (1985), Springer-Verlag · Zbl 0559.47040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.