zbMATH — the first resource for mathematics

The application of Jacobian-free Newton-Krylov methods to reduce the spin-up time of ocean general circulation models. (English) Zbl 1196.86004
Summary: In present-day forward time stepping ocean-climate models, capturing both the wind-driven and thermohaline components, a substantial amount of CPU time is needed in a so-called spin-up simulation to determine an equilibrium solution. In this paper, we present methodology based on Jacobian-Free Newton-Krylov methods to reduce the computational time for such a spin-up problem. We apply the method to an idealized configuration of a state-of-the-art ocean model, the Modular Ocean Model version 4 (MOM4). It is shown that a typical speed-up of a factor 10-25 with respect to the original MOM4 code can be achieved and that this speed-up increases with increasing horizontal resolution.

86-08 Computational methods for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI
[1] S. Griffies, M. Harrison, R. Pacanowski, A. Rosati, A Technical Guide to MOM4, NOAA/Geophysical Fluid Dynamics Laboratory, 2004. <http://www.gfdl.noaa.gov/fms>.
[2] Bleck, R.; Rooth, C.; Hu, D.; Smith, L., Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the north atlantic, J. phys. oceanogr., 22, 1486-1505, (1992)
[3] Bleck, R., An oceanic general circulation model framed in hybrid-Cartesian coordinates, Ocean model., 4, 55-88, (2001)
[4] Danilov, S.; Kivman, G.; Schröter, J., A finite-element Ocean model: principles and evaluation, Ocean model., 6, 125-150, (2004)
[5] Iskandarani, M.; Haidvogel, D.; Levin, J., A three-dimensional spectral element model for the solution of the hydrostatic primitive equations, J. comp. phys., 186, 397-425, (2003) · Zbl 1047.76089
[6] Roache, P., Computational fluid dynamics, (1976), Hermosa Publishing Albequerque, NM, USA
[7] Dijkstra, H.A.; Öksüzo˘glu, H.; Wubs, F.W.; Botta, E.F.F., A fully implicit model of the three-dimensional thermohaline Ocean circulation, J. comp. phys., 173, 685-715, (2001) · Zbl 1051.86004
[8] Weijer, W.; Dijkstra, H.A.; Oksuzoglu, H.; Wubs, F.W.; De Niet, A.C., A fully-implicit model of the global Ocean circulation, J. comp. phys., 192, 452-470, (2003) · Zbl 1032.76557
[9] de Niet, A.C.; Wubs, F.W.; Terwisscha van Scheltinga, A.D.; Dijkstra, H.A., A tailored solver for the bifurcation analysis of Ocean-climate models, J. comput. phys., 227, 654-679, (2007) · Zbl 1127.86002
[10] Khatiwala, S., Fast spin up of Ocean biogeochemical models using matrix-free Newton-Krylov, Ocean model., 23, 121-129, (2008)
[11] Li, X.; Primeau, F., A fast Newton-Krylov solver for seasonally varying global Ocean biogeochemistry models, Ocean model., 23, 13-20, (2008)
[12] Kwon, E.Y.; Primeau, F., Optimization and sensitivity study of a biogeochemistry Ocean model using an implicit solver and in situ phosphate data, Global biogeochem. cy., 20, (2006)
[13] Merlis, T.M.; Khatiwala, S., Fast dynamical spin-up of Ocean general circulation models using Newton-Krylov methods, Ocean model., 21, 97-105, (2008)
[14] Bernsen, E.; Dijkstra, H.A.; Wubs, F.W., A method to reduce the spin-up time of Ocean models, Ocean model., 20, 380-392, (2008)
[15] Bernsen, E.; Dijkstra, H.; Wubs, F., Bifurcation analysis of the wind-driven Ocean circulation with MOM4, Ocean model., 30, 95-105, (2009)
[16] Knoll, D.; Keyes, D., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. comput. phys., 193, 357-397, (2004) · Zbl 1036.65045
[17] Saad, Y., Iterative methods for sparse linear systems, (1996), PWS Publishing Company · Zbl 1002.65042
[18] Eisenstat, S.C.; Walker, H.F., Globally convergent inexact Newton methods, SIAM J. optimization, 4, 393-422, (1994) · Zbl 0814.65049
[19] V. Frayssé, L. Giraud, S. Gratton, J. Langou, A Set of GMRES Routines for Real and Complex Arithmetics on High Performance Computers, CERFACS, 2003. <http://www.cerfacs.fr/algor/reports/2003/TR_PA_03_03.pdf>. · Zbl 1070.65527
[20] Botta, E.F.F.; Wubs, F.W., MRILU: an effective algebraic multi-level ILU-preconditioner for sparse matrices, SIAM J. matrix anal. appl., 20, 1007-1026, (1999) · Zbl 0937.65057
[21] V. Frayssé, L. Giraud, S. Gratton, A set of flexible-GMRES routines for real and complex arithmetics, in: CERFACS, 1998.
[22] R. Smith, P. Gent, Reference Manual for the Parallel Ocean Program (POP), 2002. <http://climate.lanl.gov/Models/POP/POP_Reference.ps>.
[23] Coleman, T.F.; Garbow, B.S.; Moré, J.J., Software for estimating sparse Jacobian matrices, ACM T. math. software, 10, 329-345, (1984) · Zbl 0548.65006
[24] Coleman, T.F.; Garbow, B.S.; Moré, J.J., Algorithm 618: Fortran subroutines for estimating sparse Jacobian matrices, ACM T. math. software, 10, 346-347, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.