zbMATH — the first resource for mathematics

Top Yukawa deviation in extra dimension. (English) Zbl 1196.81260
Nucl. Phys., B 821, No. 1-2, 74-128 (2009); erratum ibid. 824, No. 1-2, 331-332 (2010).
Summary: We suggest a simple one-Higgs-doublet model living in the bulk of five-dimensional spacetime compactified on \(S^{1}/Z_{2}\), in which the top Yukawa coupling can be smaller than the naive standard-model expectation, i.e. the top quark mass divided by the Higgs vacuum expectation value. If we find only single Higgs particle at the LHC and also observe the top Yukawa deviation, our scenario becomes a realistic candidate beyond the standard model. The Yukawa deviation comes from the fact that the wave function profile of the free physical Higgs field can become different from that of the vacuum expectation value, due to the presence of the brane-localized Higgs potentials. In the Brane-Localized Fermion scenario, we find sizable top Yukawa deviation, which could be checked at the LHC experiment, with a dominant Higgs production channel being the \(WW\) fusion. We also study the Bulk Fermion scenario with brane-localized Higgs potential, which resembles the Universal Extra Dimension model with a stable dark matter candidate. We show that both scenarios are consistent with the current electroweak precision measurements.

81V22 Unified quantum theories
83E15 Kaluza-Klein and other higher-dimensional theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv
[1] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R., The hierarchy problem and new dimensions at a millimeter, Phys. lett. B, 429, 263, (1998) · Zbl 1355.81103
[2] Randall, L.; Sundrum, R., A large mass hierarchy from a small extra dimension, Phys. rev. lett., 83, 3370, (1999) · Zbl 0946.81063
[3] Appelquist, T.; Cheng, H.C.; Dobrescu, B.A., Bounds on universal extra dimensions, Phys. rev. D, 64, 035002, (2001)
[4] Nath, P.; Yamaguchi, M., Effects of extra space – time dimensions on the Fermi constant, Phys. rev. D, 60, 116004, (1999)
[5] Masip, M.; Pomarol, A., Effects of SM kaluza – klein excitations on electroweak observables, Phys. rev. D, 60, 096005, (1999)
[6] Rizzo, T.G.; Wells, J.D., Electroweak precision measurements and collider probes of the standard model with large extra dimensions, Phys. rev. D, 61, 016007, (2000)
[7] Strumia, A., Bounds on kaluza – klein excitations of the SM vector bosons from electroweak tests, Phys. lett. B, 466, 107, (1999)
[8] Carone, C.D., Electroweak constraints on extended models with extra dimensions, Phys. rev. D, 61, 015008, (2000)
[9] Appelquist, T.; Yee, H.U., Universal extra dimensions and the Higgs boson mass, Phys. rev. D, 67, 055002, (2003)
[10] Gogoladze, I.; Macesanu, C., Precision electroweak constraints on universal extra dimensions revisited, Phys. rev. D, 74, 093012, (2006)
[11] N. Haba, K. Oda, R. Takahashi, in preparation
[12] Hosotani, Y.; Kobayashi, Y., Yukawa couplings and effective interactions in gauge – higgs unification, Phys. lett. B, 674, 192, (2009)
[13] Flacke, T.; Menon, A.; Phalen, D.J., Non-minimal universal extra dimensions
[14] Djouadi, A.; Kalinowski, J.; Spira, M.; Djouadi, A.; Spira, M.; Zerwas, P.M., QCD corrections to hadronic Higgs decays, Comput. phys. commun., Z. phys. C, 70, 427, (1996)
[15] Amsler, C., Review of particle physics, Phys. lett. B, 667, 1, (2008)
[16] Duhrssen, M.; Heinemeyer, S.; Logan, H.; Rainwater, D.; Weiglein, G.; Zeppenfeld, D., Extracting Higgs boson couplings from LHC data, Phys. rev. D, 70, 113009, (2004)
[17] Chung, J.M.; Chung, B.K., Three-loop effective potential of \(O(N)\)\(\varphi^4\) theory, J. Korean phys. soc., 33, 643, (1998)
[18] Nomura, Y., Strongly coupled grand unification in higher dimensions, Phys. rev. D, 65, 085036, (2002)
[19] Dobado, A.; Herrero, M.J.; Pelaez, J.R.; Ruiz Morales, E., LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. rev. D, 62, 055011, (2000)
[20] Marciano, W.J.; Sirlin, A., Electroweak radiative corrections to tau decay, Phys. rev. lett., 61, 1815, (1988)
[21] van Ritbergen, T.; Stuart, R.G., Complete 2-loop quantum electrodynamic contributions to the muon lifetime in the Fermi model, Phys. rev. lett., 82, 488, (1999)
[22] Chitwood, D.B., Improved measurement of the positive muon lifetime and determination of the Fermi constant, Phys. rev. lett., 99, 032001, (2007)
[23] Barczyk, A., Measurement of the Fermi constant by FAST, Phys. lett. B, 663, 172, (2008)
[24] Peskin, M.E.; Takeuchi, T., A new constraint on a strongly interacting Higgs sector, Phys. rev. lett., 65, 964, (1990)
[25] Peskin, M.E.; Takeuchi, T., Estimation of oblique electroweak corrections, Phys. rev. D, 46, 381, (1992)
[26] Kennedy, D.C.; Lynn, B.W., Electroweak radiative corrections with an effective Lagrangian: four fermion processes, Nucl. phys. B, 322, 1, (1989)
[27] Veltman, M.J.G., Limit on mass differences in the Weinberg model, Nucl. phys. B, 123, 89, (1977)
[28] Jegerlehner, F., Physics of precision experiments with zs, Prog. part. nucl. phys., 27, 1, (1991)
[29] Barbieri, R., Ten lectures on the electroweak interactions · Zbl 1144.81001
[30] Hooper, D.; Profumo, S., Dark matter and collider phenomenology of universal extra dimensions, Phys. rep., 453, 29, (2007), and references therein
[31] Cheng, H.C.; Matchev, K.T.; Schmaltz, M., Radiative corrections to kaluza – klein masses, Phys. rev. D, 66, 036005, (2002)
[32] Dobado, A.; Herrero, M.J.; Terron, J., The role of chiral Lagrangians in strongly interacting \(W(L) - W(L)\) signals at \(p - p\) supercolliders, Z. phys. C, 50, 205, (1991)
[33] Dobado, A.; Herrero, M.J.; Truong, T.N., Study of the strongly interacting Higgs sector, Phys. lett. B, 235, 129, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.