×

zbMATH — the first resource for mathematics

Masses, fermions and generalized D-dimensional unitarity. (English) Zbl 1196.81234
Summary: We extend the generalized \(D\)-dimensional unitarity method for numerical evaluation of one-loop amplitudes by incorporating massive particles. The issues related to extending the spinor algebra to higher dimensions, treatment of external self-energy diagrams and mass renormalization are discussed within the context of the \(D\)-dimensional unitarity method. To validate our approach, we calculate in QCD the one-loop scattering amplitudes of a massive quark pair with up to three additional gluons for arbitrary spin states of the external quarks and gluons.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bern, Z., Summary Report, 5th Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, 11-29 June 2007
[2] Bern, Z.; Dixon, L.J.; Dunbar, D.C.; Kosower, D.A., Nucl. phys. B, 425, 217, (1994)
[3] Bern, Z.; Morgan, A.G., Nucl. phys. B, 467, 479, (1996)
[4] Bern, Z.; Dixon, L.J.; Kosower, D.A., Annu. rev. nucl. part. sci., 46, 109, (1996)
[5] Bern, Z.; Dixon, L.J.; Dunbar, D.C.; Kosower, D.A., Phys. lett. B, 394, 105, (1997)
[6] Britto, R.; Cachazo, F.; Feng, B., Nucl. phys. B, 725, 275, (2005)
[7] Britto, R.; Cachazo, F.; Feng, B., Phys. rev. D, 71, 025012, (2005)
[8] Bern, Z.; Dixon, L.J.; Kosower, D.A., Phys. rev. D, 71, 105013, (2005)
[9] Bern, Z.; Dixon, L.J.; Kosower, D.A., Phys. rev. D, 72, 125003, (2005)
[10] Bern, Z.; Dixon, L.J.; Kosower, D.A., Phys. rev. D, 73, 065013, (2006)
[11] Berger, C.F.; Bern, Z.; Dixon, L.J.; Forde, D.; Kosower, D.A., Phys. rev. D, 74, 036009, (2006)
[12] Britto, R.; Buchbinder, E.; Cachazo, F.; Feng, B., Phys. rev. D, 72, 065012, (2005)
[13] Britto, R.; Feng, B.; Mastrolia, P., Phys. rev. D, 73, 105004, (2006)
[14] Mastrolia, P., Phys. lett. B, 644, 272, (2007)
[15] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., Phys. lett. B, 645, 213, (2007)
[16] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., Jhep, 0703, 111, (2007)
[17] Britto, R.; Feng, B., Phys. rev. D, 75, 105006, (2007)
[18] Britto, R.; Feng, B., Jhep, 0802, 095, (2008)
[19] Britto, R.; Feng, B.; Mastrolia, P.
[20] Britto, R.; Feng, B.; Yang, G.
[21] Forde, D., Phys. rev. D, 75, 125019, (2007)
[22] Kilgore, W.B.
[23] Ellis, R.K.; Giele, W.T.; Kunszt, Z., Jhep, 0803, 003, (2008)
[24] Giele, W.T.; Kunszt, Z.; Melnikov, K., Jhep, 0804, 049, (2008)
[25] R.K. Ellis, W.T. Giele, Z. Kunszt, Contribution to the NLO Multileg Working Group for the Workshop Physics at TeV Colliders, Les Houches, France, 11-29 June, 2007, p. 31
[26] Berger, C.F.
[27] Giele, W.T.; Zanderighi, G.
[28] Bern, Z.; Dixon, L.J.; Dunbar, D.C.; Kosower, D.A., Nucl. phys. B, 435, 59, (1995)
[29] Ossola, G.; Papadopoulos, C.G.; Pittau, R., Nucl. phys. B, 763, 147, (2007)
[30] Nason, P.; Dawson, S.; Ellis, R.K., Nucl. phys. B, 303, 607, (1988)
[31] Beenakker, W.; Kuijf, H.; van Neerven, W.L.; Smith, J., Phys. rev. D, 40, 54, (1989)
[32] Dittmaier, S.; Uwer, P.; Weinzierl, S.; Dittmaier, S.; Uwer, P.; Weinzierl, S., Phys. rev. lett., Eur. phys. J. C, 59, 625, (2009)
[33] ’t Hooft, G., Nucl. phys. B, 33, 173, (1971)
[34] ’t Hooft, G.; Veltman, M.J.G., Nucl. phys. B, 44, 189, (1972)
[35] Giele, W.T.; Glover, E.W.N., Phys. rev. D, 46, 1980, (1992)
[36] Collins, J., Renormalization, (1984), Cambridge University Press Cambridge
[37] Bern, Z.; Kosower, D.A., Nucl. phys. B, 379, 451, (1992)
[38] Bern, Z.; De Freitas, A.; Dixon, L.J.; Wong, H.L., Phys. rev. D, 66, 085002, (2002)
[39] Bern, Z.; Dixon, L.J.; Kosower, D.A., Nucl. phys. B, 437, 259, (1995)
[40] Berends, F.A.; Giele, W.T., Nucl. phys. B, 306, 759, (1988)
[41] Catani, S.; Dittmaier, S.; Trocsanyi, Z., Phys. lett. B, 500, 149, (2001)
[42] Ellis, R.K.; Zanderighi, G., Jhep, 0802, 002, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.