zbMATH — the first resource for mathematics

Crooked binomials. (English) Zbl 1196.11162
Summary: A function \(f: \text{GF}(2^r) \rightarrow \text{GF}(2^r)\) is called crooked if the sets \(\{f(x) + f(x + a)\mid x \in \text{GF}(2^r)\}\) is an affine hyperplane for any nonzero \(a \in \text{GF}(2^r)\). We prove that a crooked binomial function \(f(x) = x^d + ux^e\) defined on \(\text{GF}(2^r)\) satisfies that both exponents \(d, e\) have 2-weights at most 2.

11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
94A60 Cryptography
11T06 Polynomials over finite fields
Full Text: DOI
[1] Bending T.D., Fon-Der-Flaass D.: Crooked functions, bent functions, and distance regular graphs. Electron. J. Comb. 5(1), R34 (1998) · Zbl 0903.05053
[2] Bierbrauer J.: Introduction to Coding Theory. CRC Press, Chapman and Hall (2004) · Zbl 1060.94001
[3] Brouwer A.E., Tolhuizen L.: A sharpening of the Johnson bound for binary linear codes and the nonexistence of linear codes with Preparata parameters. Des. Codes Cryptogr. 3, 95–98 (1993) · Zbl 0770.94005 · doi:10.1007/BF01388407
[4] Budaghyan L., Carlet C., Felke P., Leander G.: An infinite class of quadratic APN functions which are not equivalent to power mappings. In: Proceedings of ISIT 2006, Seattle, USA, July 2006.
[5] Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998) · Zbl 0938.94011 · doi:10.1023/A:1008344232130
[6] van Dam E.R., Fon-Der-Flaass D.: Codes, graphs, and schemes from nonlinear functions. Eur. J. Combin. 24, 85–98 (2003) · Zbl 1015.05093 · doi:10.1016/S0195-6698(02)00116-6
[7] Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006) · Zbl 1246.11185 · doi:10.1109/TIT.2005.862128
[8] Kyureghyan G.: Crooked maps in \({\mathbb{F}_{2^{n}}}\) . Finite Fields Their Appl. 13(3), 713–726 (2007) · Zbl 1170.94009 · doi:10.1016/j.ffa.2006.03.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.