zbMATH — the first resource for mathematics

Reflectivity comb in coherently dressed three-level media. (English) Zbl 1195.78044
Summary: The photonic density of states of a light beam propagating through ultracold atoms may be easily modified by modulating the atomic susceptibility with a light grating. This was predicted and observed in a resonantly absorbing atomic sample supporting electromagnetically induced transparency where a probe nearly resonant with a standing wave coupling beam experiences a fully developed stop-band. In the present work, a probe that is resonant with higher harmonics of the standing wave frequency in a highly asymmetric three-level \(\Lambda \)-configuration or a ladder configuration, is predicted to exhibit a peculiar multipeak all-optically tunable reflection pattern. Such an unusual reflectivity spectrum is shown to be related to a suppression of the absorption akin to the Borrmann effect in the dynamical X-ray diffraction in crystals. This novel effect can actually be observed in atomic hydrogen but also in a variety of atoms, such as, for example, strontium, provided the optical lattice has been angle-tuned.
78A60 Lasers, masers, optical bistability, nonlinear optics
81V80 Quantum optics
81V45 Atomic physics
Full Text: DOI
[1] DOI: 10.1103/RevModPhys.77.633 · doi:10.1103/RevModPhys.77.633
[2] DOI: 10.1103/PhysRevLett.89.143602 · doi:10.1103/PhysRevLett.89.143602
[3] DOI: 10.1016/j.optcom.2005.10.021 · doi:10.1016/j.optcom.2005.10.021
[4] DOI: 10.1038/nature02176 · doi:10.1038/nature02176
[5] DOI: 10.1103/PhysRevA.71.013821 · doi:10.1103/PhysRevA.71.013821
[6] DOI: 10.1103/PhysRevLett.96.073905 · doi:10.1103/PhysRevLett.96.073905
[7] DOI: 10.1080/09500340802220752 · Zbl 1170.82417 · doi:10.1080/09500340802220752
[8] Kittel C, Introduction to Solid State Physics (1996)
[9] DOI: 10.1103/RevModPhys.36.681 · doi:10.1103/RevModPhys.36.681
[10] Li TC, Opt. Express 16 pp 5645– (2008)
[11] Fallani L, Opt. Express 13 pp 4303– (2005) · doi:10.1364/OPEX.13.004303
[12] DOI: 10.1103/RevModPhys.78.179 · doi:10.1103/RevModPhys.78.179
[13] Artoni M, Phys. Rev. E 72 pp 46604– (2005) · doi:10.1103/PhysRevE.72.046604
[14] Landhuis D, Phys. Rev. A 67 pp 022718– (2003) · doi:10.1103/PhysRevA.67.022718
[15] Artoni M, Europhys. Lett. 49 pp 445– (2000) · doi:10.1209/epl/i2000-00169-0
[16] Artoni M, Phys. Rev. B 65 pp 235422– (2002) · doi:10.1103/PhysRevB.65.235422
[17] Yoshioka K, Phys. Rev. B 73 pp 081202– (2006) · doi:10.1103/PhysRevB.73.081202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.