×

zbMATH — the first resource for mathematics

A combined extended finite element and level set method for biofilm growth. (English) Zbl 1195.74169
Summary: This paper presents a computational technique based on the extended finite element method (XFEM) and the level set method for the growth of biofilms. The discontinuous-derivative enrichment of the standard finite element approximation eliminates the need for the finite element mesh to coincide with the biofilm-fluid interface and also permits the introduction of the discontinuity in the normal derivative of the substrate concentration field at the biofilm-fluid interface. The XFEM is coupled with a comprehensive level set update scheme with velocity extensions, which makes updating the biofilm interface fast and accurate without need for remeshing. The kinetics of biofilms are briefly given and the nonlinear strong and weak forms are presented. The nonlinear system of equations is solved using a Newton-Raphson scheme. Example problems including 1D and 2D biofilm growth are presented to illustrate the accuracy and utility of the method. The 1D results we obtain are in excellent agreement with previous 1D results obtained using finite difference methods. Our 2D results that simulate finger formation and finger-tip splitting in biofilms illustrate the robustness of the present computational technique.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74K35 Thin films
74L15 Biomechanical solid mechanics
92C10 Biomechanics
Software:
XFEM
PDF BibTeX Cite
Full Text: DOI
References:
[1] , , , . Environmental Biotechnology. McGraw-Hill: New York, 2000. ISBN: 0072345535.
[2] Laspidou, Water Research 38 pp 3362– (2004)
[3] Just, Molecular Microbiology 62 pp 1264– (2006)
[4] Stewart, Antimicrobial Agents and Chemotherapy 38 pp 1052– (1994)
[5] Wimpenny, FEMS Microbiology Ecology 22 pp 1– (1997)
[6] Picioreanu, Biotechnology and Bioengineering 57 pp 718– (1998)
[7] Noguera, Water Science and Technology 39 pp 123– (1999)
[8] Picioreanu, Water Science and Technology 39 pp 115– (2000)
[9] Hermanowicz, Mathematical Biosciences 169 pp 1– (2001)
[10] Ein interdisziplinärer Ansatz zur dreidmensionalen numerischen Simulation von Strömng, Stofftransport und Wachstum in Biofilmsystemen auf der Mikroskala. Ph.D. Thesis, Faculty of Computer Science, Munich University of Technology, 2001 (in German).
[11] Laspidou, Water Research 36 pp 2711– (2002)
[12] Laspidou, Water Research 36 pp 1983– (2002)
[13] Kreft, Microbiology 144 pp 3275– (1998)
[14] Xavier, Biotechnology and Bioengineering 91 pp 651– (2005)
[15] Xavier, Environmental Microbiology 7 pp 1085– (2005)
[16] Dockery, SIAM Journal on Applied Mathematics 62 pp 853– (2001)
[17] Simulation of biofilms using the level set method. Parametric and Geometric Deformable Models: An Application in Biomaterials and Medical Imagery. Springer: Berlin, 2006.
[18] Huang, SIAM Journal on Scientific Computing 20 pp 998– (1999)
[19] Li, Journal of Computational Physics 131 pp 368– (1997)
[20] Mackenzie, Journal of Computational Physics 168 pp 500– (2001)
[21] LeVeque, SIAM Journal on Numerical Analysis 31 pp 1019– (1994)
[22] Peskin, Journal of Computational Physics 25 pp 220– (1977)
[23] Fedkiw, Journal of Computational Physics 152 pp 457– (1999)
[24] Vaughan, Communications in Applied Mathematics and Computational Science 1 pp 207– (2006) · Zbl 1153.65373
[25] Belytschko, International Journal for Numerical Methods in Engineering 50 pp 993– (2001)
[26] Moës, International Journal for Numerical Methods in Engineering 46 pp 131– (1999)
[27] Dolbow, Finite Elements in Analysis and Design 36 pp 235– (2000)
[28] Osher, Journal of Computational Physics 79 pp 12– (1988)
[29] Barth, Journal of Computational Physics 145 pp 1– (1998)
[30] Level Set Methods & Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press: Cambridge, U.K., 1999. · Zbl 0973.76003
[31] Stolarska, International Journal for Numerical Methods in Engineering 51 pp 943– (2001)
[32] Moës, International Journal for Numerical Methods in Engineering 53 pp 2549– (2002)
[33] Gravouil, International Journal for Numerical Methods in Engineering 53 pp 2569– (2002)
[34] Ji, International Journal for Numerical Methods in Engineering 54 pp 1209– (2002)
[35] Merle, Computational Mechanics 28 pp 339– (2002)
[36] Chessa, International Journal for Numerical Methods in Engineering 53 pp 1957– (2002)
[37] Bordas, Engineering Fracture Mechanics 73 pp 1176– (2006)
[38] Bordas, Engineering with Computers 23 pp 25– (2007)
[39] Bordas, International Journal for Numerical Methods in Engineering (2007)
[40] Dunant, European Journal of Mechanics 16 pp 237– (2007)
[41] Bordas, Communications in Numerical Methods in Engineering (2007)
[42] Bordas, Computer Methods in Applied Mechanics and Engineering (2007)
[43] Duflot, International Journal for Numerical Methods in Engineering
[44] Chopp, Bulletin of Mathematical Biology 65 pp 1053– (2003)
[45] Chopp, Journal of Industrial Microbiology and Biotechnology 29 pp 339– (2002)
[46] Dockery, Bulletin of Mathematical Biology 63 pp 95– (2001)
[47] Sethian, Proceedings of the National Academy of Sciences 93 pp 1591– (1996)
[48] Adalsteinsson, Journal of Computational Physics 148 pp 2– (1999)
[49] Sethian, SIAM Review 41 pp 199– (1999)
[50] Chessa, Journal of Applied Mechanics–Transactions of the ASME 70 pp 10– (2003) · Zbl 1110.74391
[51] Chessa, International Journal for Numerical Methods in Engineering 57 pp 1015– (2003)
[52] , . Nonlinear Finite Elements for Continua and Structures. Wiley: New York, 2003. ISBN: 0-471-98774-3.
[53] Sussman, Journal of Computational Physics 148 pp 81– (1999)
[54] Sussman, Journal of Scientific Computing 20 pp 1165– (1999)
[55] Sussman, Journal of Computational Physics 114 pp 146– (1994)
[56] Sussman, Computers and Fluids 27 pp 663– (1997)
[57] Chopp, SIAM Journal on Scientific Computing 23 pp 230– (2001)
[58] Smith, Communications in Applied Mathematics and Computational Science 2 pp 35– (2007) · Zbl 1131.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.