×

zbMATH — the first resource for mathematics

The improved F-expansion method and its applications. (English) Zbl 1195.65211
Summary: The \(F\)-expansion method has been developed recently, and is a useful tool to derive the periodic wave solutions expressed by Jacobi elliptic functions for the nonlinear evolution equations. In this Letter, the improved \(F\)-expansion method, and the condition which the improved \(F\)-expansion method can be used, are introduced. As the illustrative example, the exact solutions expressed by Jacobi elliptic functions, Weierstrass elliptic function, triangle functions, hyperbolic functions and other type of functions for the generalized Hirota-Satsuma coupled KdV equation are derived.

MSC:
65N99 Numerical methods for partial differential equations, boundary value problems
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J.P.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge Univ. Press New York · Zbl 0762.35001
[2] Gu, C.H., Soliton theory and its application, (1990), Zhejiang Publishing House of Science and Technology Hangzhou
[3] Miura, M.R., Bäcklund transformation, (1978), Springer-Verlag Berlin
[4] Guo, G.P.; Zhang, J.F., Acta phys. sinica, 51, 1159, (2002)
[5] Li, Z.B.; Pan, S.Q., Acta phys. sinica, 50, 402, (2001)
[6] Liu, S.K., Phys. lett. A, 289, 69, (2001)
[7] Liu, S.D., Acta phys. sinica, 51, 718, (2002)
[8] Liu, Y.P.; Li, Z.B., Chin. phys. lett., 19, 1228, (2002)
[9] Zhang, J.F., Acta phys. sinica, 50, 1648, (2001)
[10] Chen, L.L., Acta phys. sinica, 48, 2149, (1999)
[11] Zhang, C.Z.; Lou, S.L.; Qu, S.Y., Chin. phys. lett., 19, 1747, (2002)
[12] Lin, J., Chin. phys. lett., 19, 765, (2002)
[13] Zheng, C.L.; Zhang, J.F., Chin. phys. lett., 19, 1399, (2002)
[14] Lin, J.; Lou, S.Y.; Wang, K.L., Chin. phys. lett., 18, 1173, (2001)
[15] Feng, X., Int. J. theor. phys., 39, 207, (2000)
[16] Wang, M.L., Phys. lett. A, 199, 169, (1995)
[17] Wang, M.L., Phys. lett. A, 213, 279, (1996)
[18] Wang, M.L., Adv. math., 28, 1, 72, (1999)
[19] Wang, M.L.; Wang, Y.M., Phys. lett. A, 287, 211, (2001)
[20] Fan, E.G.; Zhang, H.Q., Appl. math. mech., 19, 667, (1999)
[21] Zhou, Y.B.; Wang, M.L.; Wang, Y.M., Phys. lett. A, 308, 31, (2003)
[22] Wu, Y.T.; Geng, X.G.; Hu, X.B.; Zhu, S.M., Phys. lett. A, 255, 259, (1999)
[23] Hirota, R.; Satsuma, J., Phys. lett. A, 85, 407, (1981)
[24] Satsuma, J.; Hirota, R., J. phys. soc. jpn., 51, 332, (1982)
[25] Fan, E.G., Phys. lett. A, 282, 18, (2001)
[26] Guo, G.P.; Zhang, J.F., Acta phys. sinica, 51, 1159, (2002)
[27] Li, Z.B.; Pan, S.Q., Acta phys. sinica, 50, 402, (2001)
[28] Fan, E.G., Phys. lett. A, 282, 18, (2001)
[29] Chen, Y.; Yan, Z.Y.; Zhong, H.Q., Phys. lett. A, 307, 107, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.