×

zbMATH — the first resource for mathematics

Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method. (English) Zbl 1195.65137
Summary: A time-space pseudo-spectral method is proposed for the numerical solution of nonlinear Schrödinger equation. The employed method is based on Chebyshev-Gauss-Lobbato quadrature points. Using the pseudo-spectral differentiation matrices the problem is reduced to a system of nonlinear algebraic equations. However, this method is basically a spectral method, but a subdomain-in-time algorithm is used which yields a smaller nonlinear system to study long-time numerical behavior. Because the time-space pseudo-spectral method has spectral accuracy, we present numerical experiments which show high accuracy of this method for the variant nonlinear Schrödinger equations and also particular attention is paid to the conserved quantities as an indicator of the accuracy.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
Software:
Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agrawal, Nonlinear fiber optics (2001)
[2] Fordy, Soliton theory: a survey of results (1990) · Zbl 0697.35126
[3] Stenflo, Nonlinear wave modulation in a cylindrical plasma, IEEE Trans Plasma Sci 25 pp 1155– (1997)
[4] Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse (1999) · Zbl 0928.35157
[5] Weideman, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J Numer Anal 23 pp 485– (1986) · Zbl 0597.76012
[6] Dag, A quadratic B-spline finite element method for solving nonlinear Schrödinger equation, Comput Methods Appl Mech Eng 174 pp 247– (1999)
[7] Pathria, Pseudo-spectral solution of nonlinear Schrödinger equations, J Comput Phys 87 pp 108– (1990) · Zbl 0691.65090
[8] Bao, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J Comput Phys 187 pp 318– (2003) · Zbl 1028.82501
[9] Bao, A fourth-order time-splitting Lagurre-Hermite pseudo-spectral method for Bose-Einstein condensates, SIAM J Sci Comput 26 pp 2010– (2005)
[10] Shen, Fourierization of the Legendre-Galerkin method and a new space-time spectral method, Appl Numer Math 57 pp 710– (2007) · Zbl 1118.65111
[11] Yu, Local spectral time splitting method for first and second-order partial differential equations, J Comput Phys 206 pp 727– (2005) · Zbl 1075.65130
[12] Delfour, Finite difference solutions of a nonlinear Schrödinger equation, J Comput Phys 44 pp 277– (1981) · Zbl 0477.65086
[13] Iyengar, Variable mesh difference schemes for solving a nonlinear Schrödinger equation with a linear damping term, Comput Math Appl 40 pp 1375– (2000) · Zbl 0965.65109
[14] Wang, Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl Math Comput 170 pp 17– (2005) · Zbl 1082.65570
[15] Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simul 71 pp 16– (2006) · Zbl 1089.65085
[16] Boyd, Chebyshev and Fourier spectral methods (1989) · Zbl 0681.65079 · doi:10.1007/978-3-642-83876-7
[17] Muruganandam, Bose-Einstein condensation dynamics in three dimensions by the pseudo-spectral and finite difference methods, J Phys B 36 pp 2501– (2003)
[18] Bao, On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime, J Comput Phys 175 pp 487– (2002) · Zbl 1006.65112
[19] Fornberg, A practical guide to pseudo-spectral methods (1996) · Zbl 0844.65084 · doi:10.1017/CBO9780511626357
[20] Fornberg, A fast spectral algorithm for nonlinear wave equation with linear dispersion, J Comput Phys 155 pp 456– (1999) · Zbl 0937.65109
[21] Javidi, Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning, J Math Anal Appl 333 pp 1119– (2007) · Zbl 1117.65141
[22] Dehghan, Numerical solution of two-dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral Legendre method, Numer Methods Partial Differential Eq 22 pp 1255– (2006)
[23] Delic, Spectral function methods for nonlinear diffusion equations, J Math Phys 28 pp 39– (1987) · Zbl 0615.60077
[24] Deville, Pressure and time treatment for Chebyshev spectral solution of a Stokes problem, Int J Numer Meth Fluids 4 pp 1149– (1984) · Zbl 0554.76033
[25] Dutt, Spectral methods for initial boundary value problems, an alternative approach, SIAM J Numer Anal 27 pp 885– (1990) · Zbl 0708.65089
[26] Lewis, The space-time sinc-Galerkin method for parabolic problems, Int J Num Methods Eng 24 pp 1629– (1987) · Zbl 0643.65068
[27] Ierley, Spectral methods in time for a class of parabolic partial differential equations, J Comput Phys 102 pp 88– (1992) · Zbl 0758.65064
[28] Morchoisne, Pseudo-spectral space-time calculations of incompressible viscous flows, AIAA 81 pp 81– (1981)
[29] Morchoisne, Resolution of Navier-Stokes equations by a space-time pseudospectral method, Rech Aerosp 5 pp 293– (1979) · Zbl 0418.76026
[30] Chang, Difference schemes for solving the generalized nonlinear Schrödinger equation, J Comput Phys 148 pp 397– (1999) · Zbl 0923.65059
[31] Cerimele, Numerical solution of the Gross-Pitaevskii equation using an explicit finite difference scheme: an application to trapped Bose-Einstein condensates, Phys Rev E 62 pp 1382– (2000)
[32] Chen, Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation, Comput Math Appl 43 pp 1095– (2002) · Zbl 1050.65127
[33] Dai, Absolute stable explicit and semi-explicit schemes for Schrödinger equations, Math Numer Sinica 11 pp 128– (1989) · Zbl 0687.65118
[34] Ivanauskas, On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations, SIAM J Numer Anal 36 pp 1466– (1999) · Zbl 0944.65112
[35] Lai, A simple Dufort-Frankel type scheme for the Gross-pitaevskii equation of Bose-Einstein condensates on different geometries, Numer Methods Partial Differential Eq 20 pp 628– (2004) · Zbl 1050.81079
[36] Muslu, High-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Math Comput Simul 67 pp 581– (2005) · Zbl 1064.65117
[37] Pfeiffer, A multidomain spectral method for solving elliptic equations, Comput Phys Commun 152 pp 253– (2003) · Zbl 1196.65179
[38] Ramos, Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media, Appl Math Comput 133 pp 1– (2002) · Zbl 1024.65083
[39] Reich, Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations, J Comput Phys 157 pp 473– (2000) · Zbl 0946.65132
[40] Wu, Dufort-Frankel type methods for linear and nonlinear Schrödinger equations, SIAM J Numer Anal 33 pp 1526– (1996) · Zbl 0860.65102
[41] Canuto, Spectral methods in fluid dynamics (1988) · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[42] Shamsi, Recovering a time-dependent coefficient in a parabolic equation from overspecified boundary data using the pseudo-spectral Legendre method, Numer Methods Partial Differential Eq 23 pp 196– (2007) · Zbl 1107.65085
[43] Baltensperger, Spectral differencing with a twist, SIAM J Sci Comput 24 pp 1465– (2003) · Zbl 1034.65016
[44] Welfert, Generation of pseudo-spectral differentiation, SIAM J Numer Anal 34 pp 1640– (1997) · Zbl 0889.65013
[45] Trefethen, Spectral methods in Matlab (2000) · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[46] Tang, Single and multi-interval spectral methods in time for parabolic equations, Numer Methods Partial Differen Equations 22 pp 1007– (2006)
[47] Dehghan, On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Eq 21 pp 24– (2005)
[48] Dehghan, Parameter determination in a partial differential equation from the overspecified data, Math Comput Model 41 pp 196– (2005) · Zbl 1080.35174
[49] Dehghan, A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numer Methods Partial Differential Eq 22 pp 220– (2006)
[50] Dehghan, The one-dimensional heat equation subject to a boundary integral specification, Chaos, Solitons Fractals 32 pp 661– (2007) · Zbl 1139.35352
[51] Dehghan, Implicit collocation technique for heat equation with non-classic initial condition, Int J Nonlinear Sciences Numer Simul 7 pp 447– (2006) · Zbl 06942230
[52] Dehghan, Efficient techniques for the second-order parabolic equation subject to nonlocal specifications, Appl Numer Math 52 pp 39– (2005) · Zbl 1063.65079
[53] Dehghan, Identification of a time-dependent coefficient in a partial differential equation subject to an extra measurement, Numer Methods Partial Differential Eq 21 pp 611– (2005) · Zbl 1069.65104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.