×

zbMATH — the first resource for mathematics

Color contrast enhancement method using steerable pyramid transform. (English) Zbl 1194.94029
Summary: A new method of contrast enhancement based on steerable pyramid transform is presented in this work. The use of steerable filters is motivated by the fact that the images are to be observed by human and therefore it would be better to incorporate some knowledge on the Human Visual System in the design of the image processing tool. Here, the frequency and directional selectivity of the HVS is modeled by the steerable filters. The contrast is amplified using a selective nonlinear function which simulates the nonlinearity response of the HVS to the luminance stimuli. So the basic idea is to enhance the luminance signal irrespective of the two chrominance components using a multidirectional and multiscale decorrelation color transform. Initially the \(rgb\) (red, green and blue) color image is converted to lab (luminance and chrominance) color image. Only the luminance component is transformed by the steerable pyramid transform, so that the luminance component is independently decomposed into different scale and orientation sub-bands. The contrast in each sub-band is enhanced using a nonlinear mapping function. Finally the \(rgb\) color image is obtained from the enhanced luminance component along with the original chrominance components. The performance of the proposed method is objectively evaluated using spectrum energy analysis and a visibility map based on a perceptual filtering model. The obtained results confirm the efficiency of the method in enhancing subtle details without affecting color balance and without the usual noise amplification and edge ringing effect.
MSC:
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Koschan A., Abidi M.: Digital Color Image Processing. Wiley Ed., New York (2008)
[2] Buzuloiu V., Ciuc M., Rangayyan R.M., Vertan C.: Adaptive neighborhood histogram equalization of color images. Int. J. Electron. Image 10(2), 445–450 (2001) · doi:10.1117/1.1353200
[3] Trahanias, P.E., Venetsanopoulos, A.N.: Color image enhancement through 3-D histogram equalization. In: IEEE Proc. 11th IAPR. Joint Intl. Conf. Pattern Recognition, Hague, Netherlands, August 1992, pp. 545–548
[4] Pitas I., Kiniklis P.: Multichannel techniques in color image enhancement and modeling. IEEE Trans. Image Proc. 5, 168–171 (1996) · doi:10.1109/83.481684
[5] Niblack W.: An Introduction to Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (1986)
[6] Dash L., Chatterji B.N.: Adaptive contrast enhancement and deenhancement. Pattern Recognit. 24(4), 289–302 (1991) · doi:10.1016/0031-3203(91)90072-D
[7] Chatterji, B.N., Murthy, R.N.: Adaptive contrast enhancement for color images. In: IEEE Proc. ICICS. Joint Intl. Conf., Information, Communications and Signal Processing, Singapore, vol. 3, pp. 1537–1541, 9–12 September 1997
[8] Strickland R.N., Kim C.S., McDonnell W.F.: Digital color image enhancement based on the saturation component. Opt. Eng. 26, 609–616 (1987)
[9] Gupta A., Chanda B.: A hue preserving enhancement scheme for a class of color images. Pattern Recognit. Lett. 17, 109–114 (1996) · Zbl 05476862 · doi:10.1016/0167-8655(95)00097-6
[10] Naik S.K., Murthy C.A.: Hue-preserving color image enhancement without gamut problem. IEEE Trans. Image Process. 12(12), 1591–1598 (2003) · Zbl 05453179 · doi:10.1109/TIP.2003.819231
[11] Toet A.: Multiscale color image enhancement. Pattern Recognit. Lett. 13(3), 167–174 (1992) · Zbl 05474435 · doi:10.1016/0167-8655(92)90056-6
[12] Laine A.F., Fan J., Yang W.: Wavelets for contrast enhancement of digital mammography. IEEE Eng. Med. Biol. Mag. 14, 536–550 (1995) · doi:10.1109/51.464770
[13] Huang, K., Wang, Q., Wu, Z.: Color image enhancement and evaluation algorithm based on human visual system. IEEE Proc. ICASSP, Joint Int’l. Conf., Acoustics, Speech, and Signal Processing, Montreal, Canada, May, 17-21, 2004, pp. 721–724
[14] Xianghong, W., Shi-e, Y., Xinsheng, X.: An Effective Method to Colour Medical Image Enhancement. In: IEEE Proc. CME. Joint Int’l Conf., Complex Medical Engineering, Beijing, pp. 874–877, 23–27 May 2007
[15] Xiao, D., Ohya, J.: contrast enhancement of color images based on wavelet transform and human visual system. In: Proceeding of the IASTED International Conference, pp. 58–63, 3–5 January 2007
[16] Wu, Q., Schulze, M.A., Castleman, K.R.: Steerable pyramid filters for selective image enhancement application. In: IEEE ISCAS’98, Joint Int’l. Sym. on circuits and systeme, Monterey, California, vol. 5, pp. 325–328, May 31– June 3 1998
[17] van den Branden Lambrecht, C.J. (ed.): Special issue on image and video quality metrics. Signal Process. 70(3), 153–154 (1998)
[18] Agaian S.S., Panetta k., Grigoryan A.M.: Transform-based image enhancement algorithms with performance measure. IEEE Trans. Image Process. 10(3), 367–382 (2001) · Zbl 1036.68605 · doi:10.1109/83.908502
[19] Land E.H.: Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proc. Nat. Acad. Sci. USA 80, 5163–5169 (1983) · doi:10.1073/pnas.80.16.5163
[20] Jobson D.J., Rahman Z., Woodell G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997) · doi:10.1109/83.557356
[21] Meylan L., Süsstrunk S.: High dynamic range image rendering with a Retinex-based adaptive filter. IEEE Trans. Image Process. 15, 2820–2830 (2006) · Zbl 05453590 · doi:10.1109/TIP.2006.877312
[22] Choi, D.H., Jang, I.H., Kim, M.H., Kim, N.C.: Color image enhancement based on single-scale retinex with a jnd-based nonlinear filter. In: IEEE Proc. ISCAS. Joint Int’l. Symposium Circuits and Systems, New Orleans, USA, pp. 3948–3951, 27–30 May 2007
[23] Rahman, Z., Jobson, D., Woodell, G.A.: Multiscale retinex for color image enhancement. In: Proceedings of the IEEE International Conference on Image Processing, IEEE (1996)
[24] Jobson, D.J., Rahman, Z., Woodell, G.A.: A multi-scale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing: Special Issue on Color Processing, vol. 6, pp. 965–976, July 1997
[25] Wang, W., Zheng, J., Xian, S., Wang, J.: A fast multi-scale retinex algorithm for color image enhancement. In: IEEE proc., Int. Conf. on Wav. and Pattern Recognition, Hong Kong, pp. 80–85, 30–31 August 2008
[26] Meylan L., Alleysson D., Süsstrunk S.: A model of retinal local adaptation for the tone mapping of color filter array images. J. Opt. Soc. Am. A (JOSA A) 24(9), 2807–2816 (2007) · doi:10.1364/JOSAA.24.002807
[27] Cherifi, D., Beghdadi, A., Belbachir, A.H.: A multiscale and multi-orientation contrast enhancement method for digital mammography. In: IEEE Proc. 3th ISCCSP, Joint Int’l. Sym. on com., control and signal proc., St Julians, Malta, pp. 312–315, 12–14 March 2008
[28] Hummel R.: Image enhancement by histogram transformation. Comput. Vis. Graph. Image Process. 6(2), 184–195 (1977) · doi:10.1016/S0146-664X(77)80011-7
[29] Reza A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. VLSI Signal Process 38(1), 35–44 (2004) · Zbl 02198945 · doi:10.1023/B:VLSI.0000028532.53893.82
[30] Beghdadi A., Le Negrate A.: Contrast enhancement technique based on local detection of edges. Comput. Vis. Graph. Image Process. 46, 162–174 (1989) · doi:10.1016/0734-189X(89)90166-7
[31] Alaya Cheikh, F., Khriji, L., Gabbouj, M.: Unsharp masking-based approach for color image processing. In: Proc. of the IX European Signal Processing Conference EUSIPCO-98, vol. 2, pp. 1033–1036, Island of Rhodes, Greece, 8–11 September 1998
[32] Starck J.L., Murtagh F., Candes E.J., Donoho D.L.: Gray and color image enhancement using the curvelet transform. IEEE Trans. Image Process. 12(6), 706–717 (2003) · Zbl 1288.94013 · doi:10.1109/TIP.2003.813140
[33] Beghdadi, A., Deriche, M.: Features extraction from fingerprints using frequency domain analysis. In: IEEE Proc. Workshop On Signal Processing and its Applications, Brisbane, Australia, pp. 14–15, December 2000
[34] Iordache, R., Beghdadi, A., Viaris de Lesegno, P.: Pyramidal perceptual filtering using Moon and Spencer contrast. In: The Int. Conf. on Image Processing ICIP’2001, Thessaloniki, Greece, October 2001
[35] Freeman W.T., Adelson E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991) · Zbl 05112299 · doi:10.1109/34.93808
[36] Simoncelli E.P., Freeman W.T., Adelson E.H., Heeger D.J.: Shiftable multiscale transform. IEEE Trans. Inform. Theory 38(2), 587–607 (1992) · doi:10.1109/18.119725
[37] Karasaridis A., Simoncelli E.: A filter design technique for steerable pyramid image transforms. Proc. IEEE ICASSP 4, 2387–2390 (1996)
[38] Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Second Int’l Conf on Image Proc, vol. 3, pp. 444–447, Washington, DC, October 1995
[39] Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun., vol. COMM-31, pp. 532–540, April 1983
[40] Porat M., : The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans. Pattern Anal. Mach. Intell. 10, 452–467 (1988) · Zbl 0645.92026 · doi:10.1109/34.3910
[41] Moon P., Spencer D.E.: The visual effect of nonuniform surrounds. J. Opt. Soc. Am. 35, 233–248 (1945) · doi:10.1364/JOSA.35.000233
[42] Belkacem-Boussaïd K., Beghdadi A.: A new image smoothing method based on a simple model of spatial processing in early stages of human vision. IEEE Trans. Image Process. 9, 220–226 (2000) · doi:10.1109/83.821735
[43] http://www-stat.stanford.edu/\(\sim\)jstarck/contrast.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.