×

zbMATH — the first resource for mathematics

A complete renormalization group trajectory between two fixed points. (English) Zbl 1194.81168
Summary: We give a rigorous nonperturbative construction of a massless discrete trajectory for Wilson’s exact renormalization group. The model is a three dimensional Euclidean field theory with a modified free propagator. The trajectory realizes the mean field to critical crossover from the ultraviolet Gaussian fixed point to an analog recently constructed by D. C. Brydges, P. K. Mitter and B. Scoppola [Commun. Math. Phys. 240, No. 1-2, 281–327 (2003; Zbl 1053.81065)] of the Wilson-Fisher nontrivial fixed point.

MSC:
81T17 Renormalization group methods applied to problems in quantum field theory
81T08 Constructive quantum field theory
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Abdesselam A. (2006). Towards a complete renormalization group trajectory between two fixed points. Oberwolfach Rep. 3: 1061–1063
[2] Abdesselam A., Rivasseau V. (1997). An explicit large versus small field multiscale cluster expansion. Rev. Math. Phys. 9: 123–199 · Zbl 0870.60100
[3] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Second edition. New York: Academic Press, 2003 · Zbl 1098.46001
[4] Bach V., Møller J.S. (2003). Correlation at low temperature. I. Exponential decay. J. Funct. Anal. 203: 93–148 · Zbl 1031.82003
[5] Battle, G.: Wavelets and renormalization. In: Series in Approximations and Decompositions, Vol. 10. River Edge, NJ: World Scientific Publishing Co., Inc., 1999 · Zbl 0949.65145
[6] Benfatto, G., Gallavotti, G.: Renormalization group. Physics Notes, Vol. 1, Princeton Paperbacks. Princeton, NJ: Princeton University Press, 1995 · Zbl 0830.58038
[7] Berger, M.S.: Nonlinearity and functional analysis. Lectures on nonlinear problems in mathematical analysis. Pure and Applied Mathematics, Vol. 74. New York-London: Academic Press [Harcourt Brace Jovanovich, Publishers], 1977 · Zbl 0368.47001
[8] Bleher P.M., Sinai Ja.G. (1973). Investigation of the critical point in models of the type of Dyson’s hierarchical models. Commun. Math. Phys. 33: 23–42
[9] Bleher P.M., Sinai Ya.G. (1975). Critical indices for Dyson’s Asymptotically–hierarchical models. Commun. Math. Phys. 45: 247–278
[10] Bogachev V.I.: Gaussian measures. Mathematical Surveys and Monographs, Vol. 62. Providence, RI: Am. Math. Soc., 1998 · Zbl 0938.28010
[11] Brydges D.C., Dimock J., Hurd T.R. (1998). Estimates on renormalization group transformations. Canadian J. Math. 50: 756–793 · Zbl 0914.60078
[12] Brydges D.C., Dimock J., Hurd T.R. (1998). A non-Gaussian fixed point for {\(\phi\)}4 in 4 {\(\epsilon\)} dimensions. Commun. Math. Phys. 198: 111–156 · Zbl 0924.46062
[13] Brydges D.C., Guadagni G., Mitter P.K. (2004). Finite range decomposition of Gaussian processes. J. Stat. Phys. 115: 415–449 · Zbl 1157.82304
[14] Brydges D.C., Keller G. (1994). Correlation functions of general observables in dipole-type systems. I. Accurate upper bounds. Helvetica Phys. Acta 67: 43–116 · Zbl 0852.60109
[15] Brydges D.C., Mitter P.K., Scoppola B. (2003). Critical \((\Phi^4)_{3,\epsilon}\) . Commun. Math. Phys. 240: 281–327 · Zbl 1053.81065
[16] Brydges D.C., Talarczyk A. (2006). Finite range decompositions of positive-definite functions. J. Funct. Anal. 236: 682–711 · Zbl 1097.43002
[17] Brydges D.C., Yau H.T. (1990). Grad {\(\phi\)} perturbations of massless Gaussian fields. Commun. Math. Phys. 129: 351–392 · Zbl 0705.60101
[18] Carr, J.: Applications of centre manifold theory. Applied Mathematical Sciences, Vol. 35. New York-Berlin: Springer, 1981 · Zbl 0464.58001
[19] Chow, S.-N., Li, C.Z., Wang, D.: Normal forms and bifurcation of planar vector fields. Cambridge: Cambridge University Press, 1994 · Zbl 0804.34041
[20] Collet P., Eckmann J.-P. (1977). The {\(\epsilon\)}-expansion for the hierarchical model. Commun. Math. Phys. 55: 67–96
[21] Collet, P., Eckmann, J.-P.: A renormalization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in Physics, Vol. 74. Berlin-New York: Springer, 1978
[22] de Calan C., Fariada Veiga P.A., Magnen J., Sénéor R. (1991). Constructing the three-dimensional Gross-Neveu model with a large number of flavor components. Phys. Rev. Lett. 66: 3233–3236
[23] Delfino G., Mussardo G., Simonetti P. (1995). Correlation functions along a massless flow. Phys. Rev. D 51: 6620–6624
[24] Deligne, P. et al., eds.: Quantum fields and strings: a course for mathematicians, Vol. 1, 2. Providence, RI: Amer. Math. Soc., Princeton NJ: Institute for Advanced Study, 1999
[25] Dieudonné, J.: Foundations of modern analysis. Pure and Applied Mathematics, Vol. 10. New York-London: Academic Press, 1960 · Zbl 0100.04201
[26] Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal field theory. Graduate Texts in Contemporary Physics, New York: Springer, 1997
[27] Disertori M., Rivasseau V. (2000). Continuous constructive Fermionic renormalization. Ann. Henri Poincaré 1: 1–57 · Zbl 1083.81546
[28] Dorey P., Dunning C., Tateo R. (2000). New families of flows between two-dimensional conformal field theories. Nucl. Phys. B 578: 699–727 · Zbl 0976.81085
[29] Dunning C. (2002). Massless flows between minimal W models. Phys. Lett. B 537: 297–305 · Zbl 0995.81049
[30] Faria da Veiga, P.A.: Construction de modèles non perturbativement renormalisables en théorie quantique des champs. Ph. D. thesis, Université Paris 11, 1991
[31] Felder G. (1987). Renormalization group in the local potential approximation. Commun. Math. Phys. 111: 101–121 · Zbl 0632.35068
[32] Feldman J., Magnen J., Rivasseau V., Sénéor R. (1986). A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys. 103: 67–103 · Zbl 0594.58060
[33] Feldman J., Magnen J., Rivasseau V., Sénéor R. (1987). Construction and Borel summability of infrared \((\phi)^4_4\) by a phase space expansion. Commun. Math. Phys. 109: 437–480
[34] Fröhlich, J. ed.: Scaling and self-similarity in physics. Renormalization in statistical mechanics and dynamics. Lectures presented at the seminar held at the Institut des Hautes Études Scientifiques, Bures-sur-Yvette, 1981/1982. Progress in Physics, Vol. 7. Boston, MA: Birkhäuser Boston, Inc., 1983
[35] Gallavotti G. (1985). Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Rev. Mod. Phys. 57: 471–562
[36] Gawdzki K., Kupiainen A. (1983). Non-Gaussian fixed points of the block spin transformation. Hierarchical model approximation. Commun. Math. Phys. 89: 191–220 · Zbl 0542.60095
[37] Gawdzki K., Kupiainen A. (1984). Non-Gaussian scaling limits. Hierarchical model approximation. J. Stat. Phys. 35: 267–284 · Zbl 0589.60094
[38] Gawdzki K., Kupiainen A. (1985). Gross-Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102: 1–30
[39] Gawdski K., Kupiainen A. (1985). Renormalization of a nonrenormalizable quantum field theory. Nucl. Phys. B 262: 33–48
[40] Gel’fand, I.M., Shilov, G.E.: Generalized functions. Vol. I: Properties and operations. Translated by Eugene Saletan, New York-London: Academic Press, 1964
[41] Gell-Mann M., Low F.E. (1954). Quantum electrodynamics at small distances. Phys. Rev. (2) 95: 1300–1312 · Zbl 0057.21401
[42] Glimm J., Jaffe A. (1973). Positivity of the \(\phi^{4}_{3}\) Hamiltonian. Fortschr. Physik 21: 327–376
[43] Glimm, J., Jaffe, A.: Quantum physics. A functional integral point of view. Second edition. New York: Springer, 1987 · Zbl 0461.46051
[44] Guidi L.F., Marchetti D.H.U. (2001). Renormalization group flow of the two-dimensional hierarchical Coulomb gas. Commun. Math. Phys. 219: 671–702 · Zbl 1018.82006
[45] Helffer, B.: Semiclassical analysis, Witten Laplacians, and statistical mechanics. Series on Partial Differential Equations and Applications, Vol. 1. River Edge, NJ: World Scientific Publishing Co., Inc., 2002 · Zbl 1046.82001
[46] Hirsch, M.W., Pugh, C.C.: Stable manifolds and hyperbolic sets. In: Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Providence, RI: Am. Math. Soc., 1970, pp. 133–163
[47] Irwin M.C. (1970). On the stable manifold theorem. Bull. London Math. Soc. 2: 196–198 · Zbl 0198.56802
[48] Kelley A. (1967). The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Eqs. 3: 546–570 · Zbl 0173.11001
[49] Koch, H., Wittwer, P.: The unstable manifold of a nontrivial RG fixed point. In: Mathematical quantum field theory and related topics (Montreal, PQ, 1987), CMS Conf. Proc., Vol, 9. Providence, RI: Amer. Math. Soc., 1988, pp. 99–105
[50] Kopell N., Howard L.N. (1975). Bifurcations and trajectories joining critical points. Adv. in Math. 18: 306–358 · Zbl 0361.34026
[51] Kopper C. (1999). Mass generation in the large N-nonlinear {\(\sigma\)}-model. Commun. Math. Phys. 202: 89–126 · Zbl 0938.81023
[52] Kopper C., Magnen J., Rivasseau V. (1995). Mass generation in the large N Gross-Neveu-model. Commun. Math. Phys. 169: 121–180 · Zbl 0824.46090
[53] Kopper, C., Magnen, J., Rivasseau, V.: Personal communication, 1999
[54] Lima P.C. (1995). Renormalization group fixed points in the local potential approximation for d 3. Commun. Math. Phys. 170: 529–539 · Zbl 0845.34088
[55] Meurice, Y.: Nonlinear aspects of the renormalization group flows of Dyson’s hierarchical model. J. Phys. A 40, R39–R102 (2007) · Zbl 1118.81055
[56] Mitter, P.K.: The exact renormalization group. In: Encyclopedia of mathematical physics, J.P. Francoise et. al. eds., Vol. 2, Amsterdam: Elsevier, 2006, p. 272
[57] Mitter P.K. (2006). A non trivial fixed point in a three dimensional quantum field theory. Oberwolfach Rep. 3: 1047–1049
[58] Mitter, P.K.: Personal communication, 2005
[59] Mitter P.K., Scoppola B. (2000). Renormalization group approach to interacting polymerised manifolds. Commun. Math. Phys. 209: 207–261 · Zbl 0946.82020
[60] O’Connor, D., Stephens, C.R.: Renormalization group theory of crossovers. In: Renormalization group theory in the new millennium, IV (Taxco, 1999), Phys. Rep. 363, 425–545 (2002)
[61] Parisi G. (1975). The theory of non-renormalizable interactions, the large N expansion. Nucl. Phys. B 100: 368–388
[62] Pereira E.A. (1993). The critical surface for the tridimensional massless Gaussian fixed point: an unstable manifold with two relevant directions. J. Math. Phys. 34: 5770–5780 · Zbl 0793.46045
[63] Redmond P.J., Uretsky J.L. (1958). Conjecture concerning the properties of nonrenormalizable field theories. Phys. Rev. Lett. 1: 147–148
[64] Rivasseau, V.: From perturbative to constructive renormalization. Princeton NJ: Princeton University Press, 1991
[65] Salmhofer M. (1998). Continuous renormalization for Fermions and Fermi liquid theory. Commun. Math. Phys. 194: 249–295 · Zbl 0922.35146
[66] Salmhofer, M.: Renormalization. An introduction. Texts and Monographs in Physics, Berlin: Springer, 1999 · Zbl 0913.00014
[67] Shub, M.: Global stability of dynamical systems. With the collaboration of Albert Fathi and Rémi Langevin. Translated by Joseph Christy. New York: Springer, 1987 · Zbl 0606.58003
[68] Sijbrand J. (1985). Properties of center manifolds. Trans. Amer. Math. Soc. 289: 431–469 · Zbl 0577.34039
[69] Sjöstrand, J.: Complete asymptotics for correlations of Laplace integrals in the semi-classical limit. Mém. Soc. Math. France (N.S.) 83, (2000)
[70] Skorohod, A.V.: Integration in Hilbert space. Translated from the Russian by Kenneth Wickwire. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 79. New York-Heidelberg: Springer, 1974
[71] Sokal A.D. (1982). An alternate constructive approach to the {\(\phi\)}4 3 quantum field theory and a possible destructive approach to {\(\phi\)}4 4. Ann. Inst. Henri Poincaré Sect. A (N.S.) 37: 317–398
[72] Stueckelberg E.C.G., Petermann A. (1953). La normalisation des constantes dans la theorie des quanta. Helv. Phys. Acta 26: 499–520 · Zbl 0053.47506
[73] Symanzik K. (1975). Renormalization problem in nonrenormalizable massless {\(\Phi\)} 4 theory. Commun. Math. Phys. 45: 79–98
[74] Wieczerkowski C. (1998). Construction of the hierarchical {\(\Phi\)} 4-trajectory. J. Stat. Phys. 92: 377–430 · Zbl 1079.81552
[75] Wilson K.G., Fisher M.E. (1972). Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28: 240–243
[76] Wilson K.G., Kogut J. (1974). Renormalisation group and the {\(\epsilon\)} expansion. Phys. Rep. 12: 75–200
[77] Wilson K.G. (1975). The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47: 773–840
[78] Zamolodchikov A.B. (1986). ”Irreversibility” of the flux of the renormalization group in a 2D field theory. JETP Lett. 43: 730–732
[79] Zamolodchikov A.B. (1987). Renormalization group and perturbation theory about fixed points in two-dimensional field theory. Sov. J. Nucl. Phys. 46: 1090–1096
[80] Zamolodchikov A.B., Zamolodchikov Al.B. (1992). Massless factorized scattering and sigma models with topological terms. Nucl. Phys. B 379: 602–623
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.