×

zbMATH — the first resource for mathematics

Sensitivity coefficients for experimental estimation of interstitial properties during phase change in porous media. (English) Zbl 1194.80108
Summary: The sensitivity coefficients for analyzing the interstitial properties during phase change in porous media are presented. Computation of the sensitivity coefficients and estimation of parameters are the main objective of this study. Experimentally measured temperature data provide an estimate of the phase front locations used as the state variable for this study. The derivations are based on the assumption that the phase front, \(X\), at a given time, \(t\), is a function of interstitial properties \(\tau _{t}\) and \(\tau _{q}\) with all other parameters remaining constant. The properties \(\tau _{t}\) and \(\tau _{q}\) are the lag-time in temperature and heat flux, respectively. The study of the sensitivity coefficients using these two parameters is the objective of this study. The analysis includes two types of boundary conditions of the first kind: prescribed temperature of phase change materials and prescribed temperature for solid matrix. These boundary conditions are related to the conditions under which the experimental data used in this article were collected. The results confirm the existence of the local thermal non-equilibrium condition at the onset of a phase change phenomenon.

MSC:
80A23 Inverse problems in thermodynamics and heat transfer
80A22 Stefan problems, phase changes, etc.
76S05 Flows in porous media; filtration; seepage
Software:
Mathematica
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2514/2.6463 · doi:10.2514/2.6463
[2] Beck JV, Parameter Estimation in Engineering and Science (1977)
[3] DOI: 10.1016/0017-9310(93)90027-4 · doi:10.1016/0017-9310(93)90027-4
[4] DOI: 10.1115/1.2822664 · doi:10.1115/1.2822664
[5] DOI: 10.1115/1.2911451 · doi:10.1115/1.2911451
[6] DOI: 10.1016/S0022-0728(98)00354-4 · doi:10.1016/S0022-0728(98)00354-4
[7] Agwu Nnanna AG, PhD dissertation, The University of Texas at Arlington (2002)
[8] DOI: 10.1016/j.ijheatmasstransfer.2004.04.029 · doi:10.1016/j.ijheatmasstransfer.2004.04.029
[9] DOI: 10.1016/S0017-9310(00)00191-5 · Zbl 1008.76096 · doi:10.1016/S0017-9310(00)00191-5
[10] DOI: 10.1016/S0017-9310(99)00043-5 · Zbl 0956.76090 · doi:10.1016/S0017-9310(99)00043-5
[11] DOI: 10.1016/S0894-1777(02)00309-6 · doi:10.1016/S0894-1777(02)00309-6
[12] DOI: 10.1016/0017-9310(95)00401-7 · doi:10.1016/0017-9310(95)00401-7
[13] DOI: 10.1016/S0010-4655(03)00488-0 · Zbl 05801335 · doi:10.1016/S0010-4655(03)00488-0
[14] DOI: 10.1016/0017-9310(96)00034-8 · doi:10.1016/0017-9310(96)00034-8
[15] DOI: 10.1016/S0022-1694(03)00192-6 · doi:10.1016/S0022-1694(03)00192-6
[16] DOI: 10.1016/S0894-1777(03)00113-4 · doi:10.1016/S0894-1777(03)00113-4
[17] DOI: 10.1115/1.1336507 · doi:10.1115/1.1336507
[18] DOI: 10.1115/1.1332780 · doi:10.1115/1.1332780
[19] DOI: 10.1016/0017-9310(94)90219-4 · doi:10.1016/0017-9310(94)90219-4
[20] DOI: 10.1016/S0017-9310(98)00120-3 · Zbl 0925.76732 · doi:10.1016/S0017-9310(98)00120-3
[21] Tzou DK, Macro- to Microscale Heat Transfer (1997)
[22] Wolfram S, The Mathematica Book (1999)
[23] DOI: 10.1016/j.camwa.2002.10.017 · Zbl 1064.65152 · doi:10.1016/j.camwa.2002.10.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.