zbMATH — the first resource for mathematics

An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction. (English) Zbl 1194.76117
Summary: This paper presents a new fixed grid fluid-structure interaction scheme that can be applied to the interaction of most general structures with incompressible flow. It is based on an eXtended Finite Element Method (XFEM) based strategy. The extended Eulerian fluid field and the Lagrangian structural field are partitioned and iteratively coupled using Lagrange multiplier techniques for non-matching grids. The approach allows the simulation of the interaction of thin and bulky structures exhibiting large deformations. Finally, qualitative examples and a benchmark computation demonstrate key features and accuracy of the method.

76M10 Finite element methods applied to problems in fluid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Baaijens, F.P.T., A fictitious domain/mortar element method for fluid – structure interaction, Int. J. numer. methods fluids, 35, 7, 743-761, (2001) · Zbl 0979.76044
[2] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. methods engrg., 45, 5, 601-620, (1999) · Zbl 0943.74061
[3] Belytschko, T.; Kennedy, J.M., Computer models for subassembly simulation, J. nucl. engrg. des., 49, 17-38, (1978)
[4] Belytschko, T.; Kennedy, J.M.; Schoeberle, D., Quasi-Eulerian finite element formulation for fluid structure interaction, J. press. vess. technol., 102, 62-69, (1980)
[5] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley & Sons, Inc. · Zbl 0959.74001
[6] Bernardi, C.; Maday, Y.; Patera, A.T., Domain decomposition by the mortar element method, Asymptot. numer. methods partial differ. equations, 384, 269-286, (1993) · Zbl 0799.65124
[7] Bernardi, C.; Maday, Y.; Patera, A.T., A new nonconforming approach to domain decomposition: the mortar element method, Nonlinear partial differ. equations appl., 299, 13-51, (1994) · Zbl 0797.65094
[8] J. Chessa, The extended finite element method for free surface and two-phase flow problems, Ph.D. thesis, Northwestern University, June 2003. · Zbl 1032.76591
[9] Cirak, F.; Radovitzky, R., A lagrangian – eulerian shell-fluid coupling algorithm based on level sets, Comput. struct., 83, 6-7, 491-498, (2005)
[10] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary cracks and holes with the extended finite element method, Int. J. numer. methods engrg., 48, 12, 1741-1760, (2000) · Zbl 0989.74066
[11] De Hart, J.; Peters, G.W.; Schreurs, P.J.; Baaijens, F.P., A two-dimensional fluid – structure interaction model of the aortic value, J. biomech., 33, 9, 1079-1088, (2000)
[12] J. Donéa, P. Fasoli-Stella, S. Giuliani, Lagrangian and Eulerian finite element techniques for transient fluid – structure interaction problems, in: Trans. 4th Int. Conf. on Structural Mechanics in Reactor Technology, 1977.
[13] Fedkiw, R.P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. comput. phys., 152, 2, 457-492, (1999) · Zbl 0957.76052
[14] Förster, C.; Wall, W.A.; Ramm, E., On the geometric conservation law in transient flow calculations on deforming domains, Int. J. numer. methods fluids, 50, 12, 1369-1379, (2006) · Zbl 1097.76049
[15] Förster, C.; Wall, W.A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. methods appl. mech. engrg., 196, 7, 1278-1293, (2007) · Zbl 1173.74418
[16] C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, 2007. http://www.geuz.org/gmsh/. · Zbl 1176.74181
[17] Glowinski, R.; Pan, T.-W.; Hesla, T.I.; Joseph, D.D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. multiphase flow, 25, 5, 755-794, (1999) · Zbl 1137.76592
[18] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for external incompressible viscous flow modeled by navier – stokes equations, Comput. methods appl. mech. engrg., 112, 1-4, 133-148, (1994) · Zbl 0845.76069
[19] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. methods appl. mech. engrg., 193, 33-35, 3523-3540, (2004) · Zbl 1068.74076
[20] Hirth, C.; Amsden, A.A.; Cook, J., An arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[21] Hughes, T.J.; Liu, W.K., Implicit – explicit finite elements in transient analysis, J. appl. mech., 45, 371-378, (1978) · Zbl 0392.73076
[22] Hughes, T.J.; Liu, W.K.; Zimmermann, T., Lagrangian – eulerian finite element formulation for incompressible viscous flows, Comput. methods appl. mech. engrg., 29, 329-349, (1981) · Zbl 0482.76039
[23] Irons, B.M.; Tuck, R.C., A version of the aitken accelerator for computer iteration, Int. J. numer. methods engrg., 1, 3, 275-277, (1969) · Zbl 0256.65021
[24] Lee, L.; LeVeque, R.J., An immersed interface method for incompressible navier – stokes equations, SIAM J. scientific comput., 25, 3, 832-856, (2003) · Zbl 1163.65322
[25] Legay, A.; Chessa, J.; Belytschko, T., An eulerian – lagrangian method for fluid – structure interaction based on level sets, Comput. methods appl. mech. engrg., 195, 17-18, 2070-2087, (2006) · Zbl 1119.74053
[26] LeVeque, R.J.; Calhoun, D., Cartesian grid methods for fluid flow in complex geometries, () · Zbl 1170.92315
[27] Löhner, R.; Baum, J.D.; Mestreau, E.; Sharov, D.; Charman, C.; Pelessone, D., Adaptive embedded unstructured grid methods, Int. J. numer. methods engrg., 60, 3, 641-660, (2004) · Zbl 1060.76574
[28] Mittal, R.; Iaccarino, G., Immersed boundary methods, Ann. rev. fluid mech., 37, 1, 239-261, (2005) · Zbl 1117.76049
[29] D.P. Mok, Partitionierte Lösungsansätze in der Struktur- dynamik und der Fluid-Struktur-Interaktion., Tech. Rep. Ph.D. Thesis, Report No. 36, Institute of Structural Mechanics, University of Stuttgart (2001).
[30] D.P. Mok, W.A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, in: W. Wall, K.-U. Bletzinger, K. Schweizerhof (Eds.), Trends in Computational Structural Mechanics, CIMNE: Barcelona, 2001.
[31] Moës, N.; Béchet, E.; Tourbier, M., Imposing Dirichlet boundary conditions in the extended finite element method, Int. J. numer. methods engrg., 67, 12, 1641-1669, (2006) · Zbl 1113.74072
[32] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 1, 131-150, (1999) · Zbl 0955.74066
[33] Noh, W., CEL: a time-dependent two-space-dimensional coupled eulerian – lagrangian code, ()
[34] Park, K.C.; Felippa, C.A.; Ohayon, R., Partitioned formulation of internal fluid – structure interaction problems by localized Lagrange multipliers, Comput. methods appl. mech. engrg., 190, 24-25, 2989-3007, (2001) · Zbl 0983.74022
[35] Peskin, C.S., Numerical analysis of blood flow in the heart, J. comput. phys., 25, 3, 220-252, (1977) · Zbl 0403.76100
[36] Peskin, C.S., The immersed boundary method, Acta numer., 11, 1, 479-517, (2002) · Zbl 1123.74309
[37] Réthoré, J.; Gravouil, A.; Combescure, A., An energy-conserving scheme for dynamic crack growth using the extended finite element method, Int. J. numer. methods engrg., 63, 5, 631-659, (2005) · Zbl 1122.74519
[38] Schäfer, M.; Turek, S., Benchmark computations of laminar flow around a cylinder, Notes numer. fluid mech., 52, 547-566, (1996) · Zbl 0874.76070
[39] Tezduyar, T.E., Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces, Comput. methods appl. mech. engrg., 195, 23-24, 2983-3000, (2006) · Zbl 1176.76076
[40] van Loon, R.; Anderson, P.D.; Baaijens, F.P.; van de Vosse, F.N., A three-dimensional fluid – structure interaction method for heart valve modelling, CR mec., 333, 12, 856-866, (2005) · Zbl 1173.76319
[41] Wagner, G.J.; Ghosal, S.; Liu, W.K., Particulate flow simulations using lubrication theory solution enrichment, Int. J. numer. methods engrg., 56, 9, 1261-1289, (2003) · Zbl 1032.76037
[42] W.A. Wall, Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen, Ph.D. thesis, Universität Stuttgart, Institut für Baustatik, 1999.
[43] Wall, W.A.; Gerstenberger, A.; Gamnitzer, P.; Förster, C.; Ramm, E., Large deformation fluid – structure interaction – advances in ALE methods and new fixed grid approaches, () · Zbl 1323.74097
[44] W.A. Wall, D.P. Mok, E. Ramm, Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures, in: W. Wunderlich (Ed.), Solids, Structures and Coupled Problems in Engineering, Proc. ECCM’99, Munich, 1999.
[45] Wang, X.; Liu, W.K., Extended immersed boundary method using FEM and RKPM, Comput. methods appl. mech. engrg., 193, 12-14, 1305-1321, (2004) · Zbl 1060.74676
[46] Wohlmuth, B.I., Discretization methods and iterative solvers based on domain decomposition, (2001), Springer · Zbl 0966.65097
[47] Yu, Z., A DLM/FD method for fluid/flexible-body interactions, J. comput. phys., 207, 1, 1-27, (2005) · Zbl 1177.76304
[48] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W.K., Immersed finite element method, Comput. methods appl. mech. engrg., 193, 21-22, 2051-2067, (2004) · Zbl 1067.76576
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.