×

zbMATH — the first resource for mathematics

A smoothed finite element method for shell analysis. (English) Zbl 1194.74453
Summary: A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
PDF BibTeX Cite
Full Text: DOI
References:
[1] P.M.A. Areias, J.H. Song, T. Belytschko, A simple finite-strain quadrilateral shell element. Part I: Elasticity, Int. J. Numer. Methods Engrg., in press. · Zbl 1113.74063
[2] Areias, P.M.A.; Song, J.H.; Belytschko, T., Analysis of fracture in thin shells by overlapping paired elements, Int. J. numer. methods engrg., 195, 5343-5360, (2006) · Zbl 1120.74048
[3] Bathe, K.J., Finite element procedures, (1996), Prentice-Hall, Massachusetts (MIT) Englewood Cliffs, NJ · Zbl 0511.73065
[4] Bathe, K.J.; Dvorkin, E.N., A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int. J. numer. methods engrg., 21, 367-383, (1985) · Zbl 0551.73072
[5] Bathe, K.J.; Dvorkin, E.N., A formulation of general shell elements-the use of mixed interpolation of tensorial components, Int. J. numer. methods engrg., 22, 697-722, (1986) · Zbl 0585.73123
[6] Batoz, J.L.; Dhatt, G., Modélisation des structures par éléments finis, Poutres et plaques, vol. 2, (1990), Hermès · Zbl 0831.73001
[7] Belytschko, T.; Leviathan, I., Physical stabilization of the 4-node shell element with one-point quadrature, Comput. methods appl. mech. engrg., 113, 321-350, (1994) · Zbl 0846.73058
[8] M. Bischoff, Theorie und Numerik einer dreidimensionalen Schalenformulierung, Ph.D. thesis, University Stuttgart, 1999.
[9] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. numer. methods engrg., (1997) · Zbl 0892.73054
[10] Bletzinger, K.U.; Bischoff, M.; Ramm, E., A unified approach for shear-locking-free triangular and rectangular shell finite elements, Comput. struct., (2000)
[11] Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. numer. methods engrg., 50, 435-466, (2001) · Zbl 1011.74081
[12] Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J., Concepts and applications of finite element analysis, (2001), John Wiley and Sons
[13] Duddeck, H., Die biegetheorie der flachen hyperbolischen paraboloidschale z=cxy, Ing. archiv, 31, 44-78, (1962) · Zbl 0103.41501
[14] Dvorkin, E.; Bathe, K.J., A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. comput., (1984)
[15] Wagner, W.; Gruttmann, F., A linear quadrilateral shell element with fast, Comput. methods appl. mech. engrg., 194, 4279-4300, (2005) · Zbl 1151.74418
[16] Flores, F.G.; Estrada, C.F., A rotation-free thin shell quadrilateral, Comput. methods appl. mech. engrg., 196, 2631-2646, (2007) · Zbl 1173.74417
[17] Guzey, S.; Stolarski, H.K.; Cockburn, B.; Tamma, K.K., Design and development of a discontinuous Galerkin method for shells, Comput. methods appl. mech. engrg., 195, 3528-3548, (2006) · Zbl 1157.74041
[18] Hughes, T.J.R., The finite element method, (1987), Prentice-Hall Englewood Cliffs, NJ
[19] Hughes, T.J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in finite element method of plates, Nucl. engrg. des., 46, 203-222, (1978)
[20] Hughes, T.J.R.; Liu, W.K., Nonlinear finite element analysis of shells. part II: two dimensional shells, Comput. methods appl. mech. engrg., 27, 167-182, (1981)
[21] Hughes, T.J.R.; Taylor, R.L.; Kanoknukulchai, W., Simple and efficient element for plate bending, Int. J. numer. methods engrg., 11, 1529-1543, (1977) · Zbl 0363.73067
[22] Hughes, T.J.R.; Tezduyar, T., Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, J. appl. mech., (1981) · Zbl 0459.73069
[23] K. Kansara, Development of membrane, plate and flat shell elements in java, Master’s thesis, Virginia Polytechnic Institute and State University, 2004.
[24] Chapelle, D.; Bathe, K.J.; Iosilevich, A., An evaluation of the MITC shell elements, Comput. struct., 75, 1-30, (2000)
[25] Liu, G.R.; Dai, K.Y.; Nguyen, T.T., A smoothed finite element for mechanics problems, Comput. mech., 39, 859-877, (2007) · Zbl 1169.74047
[26] Liu, G.R.; Nguyen, T.T.; Dai, K.Y.; Lam, K.Y., Theoretical aspects of the smoothed finite element method (SFEM), Int. J. numer. methods engrg., 71, 902-930, (2007) · Zbl 1194.74432
[27] Lyly, M.; Stenberg, R.; Vihinen, T., A stable bilinear element for reissner – mindlin plate model, Comput. methods appl. mech. engrg., 110, 343-357, (1993) · Zbl 0846.73065
[28] McNeal, R.H.; Harder, R.L., A proposed set of problems to test finite element accuracy, Finite elem. anal., 1, 3-20, (1985)
[29] H. Nguyen-Xuan, S. Bordas, H. Nguyen-Dang, Smooth finite element methods: convergence, accuracy and properties, Int. J. Numer. Methods Engrg., in press, DOI:10.1002/nme.2146. · Zbl 1159.74435
[30] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J.F., A smoothed finite element method for plate analysis, Comput. methods appl. mech. engrg., 197, 1184-1203, (2008) · Zbl 1159.74434
[31] Rabczuk, T.; Areias, P., A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Comput. model. engrg. sci., 16, 2, 115-130, (2006)
[32] Rabczuk, T.; Areias, P.M.A.; Belytschko, T., A meshfree thin shell for large deformation, finite strain and arbitrary evolving cracks, Int. J. numer. methods engrg., 72, 5, 524-548, (2007) · Zbl 1194.74537
[33] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. numer. methods engrg., 61, 13, 2316-2343, (2004) · Zbl 1075.74703
[34] Rabczuk, T.; Belytschko, T., Adaptivity for structured meshfree particle methods in 2D and 3D, Int. J. numer. methods engrg., 63, 11, 1559-1582, (2005) · Zbl 1145.74041
[35] Rabczuk, T.; Belytschko, T.; Xiao, S.P., Stable particle methods based on Lagrangian kernels, Comput. methods appl. mech. engrg., 193, 1035-1063, (2004) · Zbl 1060.74672
[36] R. Sauer, Eine einheitliche Finite-Element-Formulierung fur Stab- und Schalentragwerke mit endlichen Rotationen, Bericht 4 (1998), Institut fur Baustatik, Universitat Karlsruhe (TH), 1998.
[37] Scordelis, A.C.; Lo, K.S., Computer analysis of cylindrical shells, J. am. concrete inst., 61, 539-561, (1964)
[38] Simo, J.C.; Fox, D.D.; Rifai, M.S., On a stress resultant geometrically exact shell model. part II: the linear theory; computational aspects, Comput. methods appl. mech. engrg., 73, 53-92, (1989) · Zbl 0724.73138
[39] Taylor, R.L., Finite element analysis of linear shell problems, () · Zbl 0682.73048
[40] Taylor, R.L.; Kasperm, E.P., A mixed-enhanced strain method, Comput. struct., 75, 237-250, (2000)
[41] Yoo, J.W.; Moran, B.; Chen, J.S., Stabilized conforming nodal integration in the natural-element method, Int. J. numer. methods engrg., 60, 861-890, (2004) · Zbl 1060.74677
[42] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth Heinemann Oxford · Zbl 0991.74002
[43] Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M., Reduced integration technique in general analysis of plates and shells, Int. J. numer. methods engrg., 3, 275-290, (1971) · Zbl 0253.73048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.