zbMATH — the first resource for mathematics

Isogeometric structural shape optimization. (English) Zbl 1194.74263
Summary: An old dilemma in structural shape optimization is the needed tight link between design model or geometric description and analysis model. The intention of this paper is to show that isogeometric analysis offers a potential and promising way out of this dilemma. To this end we show a structural shape optimization framework based on the isogeometric analysis approach. With the discretization based on Non-Uniform Rational B-Splines (NURBS) the analysis model represents the structural geometry exactly. Furthermore, NURBS enable efficient geometry control together with smooth boundaries. They are the de facto standard in CAD systems, but are also widely used in a shape optimal design context to define the geometry representation and the design variables. With the presented isogeometric approach to shape optimization, the analysis model is inherently merged with the design model, omitting the typically involved interplay between both. We derive analytical sensitivities for NURBS discretizations which allow application of efficient gradient-based optimization algorithms. The present contribution is restricted to two-dimensional problems of linear elasticity, but the extension to three dimensions and other problem classes is straightforward. Some representative examples demonstrate and validate the methodology. Further, the potential of boundary continuity control within isogeometric structural shape optimization is explored to trigger smooth or less smooth (angular) designs.

74P10 Optimization of other properties in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI
[1] Bazilevs, Y.; Da Veiga, L. Beirao; Cottrell, J.; Hughes, T.J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. mod. meth. appl. sci., 16, 1031-1090, (2006) · Zbl 1103.65113
[2] Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. meth. appl. mech. engrg., 197, 1-4, 173-201, (2007) · Zbl 1169.76352
[3] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 4, 310-322, (2006) · Zbl 1161.74020
[4] Bendsoe, M.; Sigmund, O., Topology optimization. theory, methods and applications, (2003), Springer-Verlag Berlin, Heidelberg, New York · Zbl 1059.74001
[5] Bennet, J.; Botkin, M., Structural shape optimization with geometric problem description and adaptive mesh refinement, Aiaa j., 23, 458-464, (1984)
[6] Bletzinger, K.-U.; Daoud, F.; Firl, M., Filter techniques in shape optimization with cad-free parametrization, ()
[7] Bletzinger, K.-U.; Kimmich, S.; Ramm, E., Efficient modeling in shape optimal design, Comput. syst. engrg., 2, 5-6, 483-495, (1991)
[8] Bletzinger, K.-U.; Ramm, E., A general finite element approach to the form finding of tensile structures by the updated reference strategy, Int. J. space struct., 14, 15, 131-145, (1999)
[9] Bletzinger, K.-U.; Ramm, E., Structural optimization and form finding of light weight structures, Comput. struct., 79, 22-25, 2053-2062, (2001)
[10] Bletzinger, K.-U.; W üchner, R.; Daoud, F.; Camprubi, N., Computational methods for form finding and optimization of shells and membranes, Comput. meth. appl. mech. engrg., 194, 30-33, 3438-3452, (2005) · Zbl 1092.74032
[11] Braibant, V.; Fleury, C., Shape optimal design using b-splines, Comput. meth. appl. mech. engrg., 44, 3, 247-267, (1984) · Zbl 0525.73104
[12] V. Braibant, C. Fleury, P. Beckers, Shape optimal design: an approach matching c.a.d. and optimization concepts, Technical Report, Report SA-109, Aerospace Laboratory of the University of Liege, Belgium, 1983.
[13] Cervera, E.; Trevelyan, J., Evolutionary structural optimisation based on boundary representation of NURBS. part i: 2d algorithms, Comput. struct., 83, 23-24, 1902-1916, (2005)
[14] Cottrell, J.; Hughes, T.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. meth. appl. mech. engrg., 196, 41-44, 4160-4183, (2007) · Zbl 1173.74407
[15] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. meth. appl. mech. engrg., 195, 41-43, 5257-5296, (2006) · Zbl 1119.74024
[16] C. Cyron, Nurbs als ansatz zur diskretisierung strukturmechanischer probleme, Technical Report, Lehrstuhl fu˙r Numerische Mechanik, Technische Universita˙t Mu˙nchen, 2006.
[17] F. Daoud, Formoptimierung von freiformschalen mathematische algorithmen und filtertechniken, Ph.D. Thesis, Technische Universität München, 2005.
[18] Daoud, F.; Camprubi, N.; Bletzinger, K.-U., Filtering and regularization shape optimization techniques for optimization with cad-free parametrization, ()
[19] F. Daoud, M. Firl, K.-U. Bletzinger, Filter techniques in shape optimization with cad-free parametrization, in: 6th World Congresses of Structural and Multidisciplinary Optimization, WCSMO 6, Rio de Janeiro, Brazil, 2005.
[20] Farin, G., NURBS curves and surfaces: from projective geometry to practical use, (1995), A.K. Peters Ltd. Natick, MA · Zbl 0835.65020
[21] Fletcher, R., Practical methods of optimization, (2003), John Wiley & Sons · Zbl 0905.65002
[22] Francavilla, A.; Ramakrishnan, C.V.; Zienkiewicz, O.C., Optimization of shape to minimize stress concentration, Strain anal. engrg. design, 10, 63-70, (1975)
[23] Haftka, R.T.; Grandhi, R.V., Structural shape optimization – a survey, Comput. meth. appl. mech. engrg., 57, 1, 91-106, (1986) · Zbl 0578.73080
[24] Haftka, R.T.; Gürdal, Z., Elements of structural optimization, (1992), Kluwer Academic Publishers · Zbl 0782.73004
[25] Herskovits, J.; Dias, G.; Santos, G.; Soares, C.M., Shape structural optimization with an interior point nonlinear programming algorithm, Struct. multidiscip. optim., 20, 2, 107-115, (2000)
[26] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications Mineola, NY
[27] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: cad, finite elements, NURBS, exact geometry and mesh refinement, Comput. meth. appl. mech. engrg., 194, 39-41, 4135-4195, (2005) · Zbl 1151.74419
[28] Imam, M.H., Three-dimensional shape optimization, Int. J. numer. meth. engrg., 18, 5, 661-673, (1982) · Zbl 0482.73071
[29] Olhoff, N.; Bendsoe, M.P.; Rasmussen, J., On cad-integrated structural topology and design optimization, Comput. meth. appl. mech. engrg., 89, 1-3, 259-279, (1991)
[30] Piegl, L.; Tiller, W., The NURBS book (monographs in visual communication), (1997), Springer-Verlag New York
[31] Rasmussen, J., The structural optimization system caos, Struct. multidiscip. optim., 2, 2, 109-115, (1990)
[32] Rayasam, M.; Srinivasan, V.; Subbarayan, G., CAD inspired hierarchical partition of unity constructions for NURBS-based, meshless design, analysis and optimization, Int. J. numer. meth. engrg., 72, 12, 1452-1489, (2007) · Zbl 1194.74310
[33] Rogers, D.F., An introduction to NURBS with historical perspective, (2001), Academic Press San Diego
[34] Schramm, U.; Pilkey, W.D., The coupling of geometric descriptions and finite elements using NURBS - a study in shape optimization, Finite elem. anal. design, 15, 1, 11-34, (1993) · Zbl 0801.73074
[35] Svanberg, K., The method of moving asymptotes – a new method for structural optimization, Int. J. numer. meth. engrg., 24, 2, 359-373, (1987) · Zbl 0602.73091
[36] Szabo, B.; Düster, A.; Rank, E., The p-version of the finite element method, (), 120-140
[37] Timoshenko, S.P.; Godier, J.N., Theory of elasticity, (1970), McGraw-Hill Singapore · Zbl 0266.73008
[38] Wilke, D.; Kok, S.; Groenwold, A., A quadratically convergent unstructured remeshing strategy for shape optimization, Int. J. numer. meth. engrg., 65, 1, 1-17, (2006) · Zbl 1122.74478
[39] Zhang, X.; Rayasam, M.; Subbarayan, G., A meshless, compositional approach to shape optimal design, Comput. meth. appl. mech. engrg., 196, 17-20, 2130-2146, (2007) · Zbl 1173.74371
[40] Zienkiewicz, O.; Campbell, J., Shape optimization and sequential linear programming, (), 109-126
[41] Zienkiewicz, O.; Taylor, R., The finite element method, vols. 1-3, (2005), Butterworth-Heinemann · Zbl 1084.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.