zbMATH — the first resource for mathematics

On non-physical response in models for fiber-reinforced hyperelastic materials. (English) Zbl 1194.74042
Summary: Soft biological tissues are sometimes composed of thin and stiff collagen fibers in a soft matrix leading to a strong anisotropy. Commonly, constitutive models for quasi-incompressible materials, as for soft biological tissues, make use of an additive split of the Helmholz free-energy into a volumetric and a deviatoric part that is applied to the matrix and fiber contribution. This split offers conceptual and numerical advantages. The purpose of this paper is to investigate a non-physical effect that arises thereof. In fact, simulations involving uniaxial stress configurations reveal volume growth at rather small stretches. Numerical methods such as the Augmented Lagrangian method might be used to suppress this behavior. An alternative approach, proposed here, solves this problem on the constitutive level.

74E30 Composite and mixture properties
74B20 Nonlinear elasticity
Full Text: DOI
[1] Antman, S. S.: Nonlinear problems of elasticity, (2005) · Zbl 1098.74001
[2] Bahuaud, J.; Boivin, M.: Étude du coefficient de Poisson pour des déformations élastiques, élastico-plastiques, petites ou finies, J. mécanique 7, 141-153 (1968)
[3] Balzani, D.; Neff, P.; Schröder, J.; Holzapfel, G. A.: A polyconvex framework for soft biological tissues. Adjustment to experimental data, Int. J. Solids struct. 43, 6052-6070 (2006) · Zbl 1120.74632 · doi:10.1016/j.ijsolstr.2005.07.048
[4] Eberlein, R.; Holzapfel, G. A.; Schultze-Bauer, C. A.: An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies, Comput. methods biomech. Biomed. eng. 4, 209-229 (2001)
[5] Ehlers, W.; Eipper, G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws, Acta mech. 130, 17-27 (1998) · Zbl 0904.73014 · doi:10.1007/BF01187040
[6] Flory, P. J.: Thermodynamic relations for high elastic materials, Trans. Faraday soc. 57, 829-838 (1961)
[7] Hartmann, S.; Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near incompressibility, Int. J. Solids struct. 40, 2767-2791 (2003) · Zbl 1051.74539 · doi:10.1016/S0020-7683(03)00086-6
[8] Holzapfel, G.: Nonlinear solid mechanics a continuum approach for engineering, (2000) · Zbl 0980.74001
[9] Holzapfel, G. A.; Gasser, T. C.; Ogden, R. W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. elasticity 61, 1-48 (2000) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[10] Holzapfel, G. A.; Gasser, T. C.; Ogden, R. W.: Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability, J. biomech. Eng. 126, 264-275 (2004)
[11] MATLAB, 2005. The MathWorks, Inc., R14, Natick, MA 01760-2098, USA.
[12] Nipp, K.; Stoffer, D.: Lineare algebra, Eine einführung für ingenieure unter besonderer berücksichtigung numerischer aspekte (1998) · Zbl 0912.15002
[13] Ogden, R. W.: Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. lond. A math. Phys. sci. 326, 565-584 (1972) · Zbl 0257.73034 · doi:10.1098/rspa.1972.0026
[14] Rivlin, R. S.; Saunders, D. W.: Large elastic deformations of isotropic materials. VII: experiments on the deformation of rubber, Proc. R. Soc. lond. A math. Phys. sci. 243, 251-288 (1951) · Zbl 0042.42505 · doi:10.1098/rsta.1951.0004
[15] Rubin, M. B.; Bodner, S. R.: A three-dimensional nonlinear model for dissipative response of soft tissue, Int. J. Solids struct. 39, 5081-5099 (2002) · Zbl 1042.74036 · doi:10.1016/S0020-7683(02)00237-8
[16] Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy, Eur. J. Mech. A solids 27, 28-39 (2008) · Zbl 1129.74009 · doi:10.1016/j.euromechsol.2007.04.001
[17] Schröder, J.; Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, Int. J. Solids struct. 40, 401-445 (2003) · Zbl 1033.74005 · doi:10.1016/S0020-7683(02)00458-4
[18] Schröder, J.; Neff, P.; Balzani, D.: A variational approach for materially stable anisotropic hyperelasticity, Int. J. Solids struct. 42, 4352-4371 (2005) · Zbl 1119.74321 · doi:10.1016/j.ijsolstr.2004.11.021
[19] Simo, J. C.; Taylor, R. L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comput. methods appl. Mech. eng. 85, 273-310 (1991) · Zbl 0764.73104 · doi:10.1016/0045-7825(91)90100-K
[20] Weiss, J. A.; Maker, B. N.; Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput. methods appl. Mech. eng. 135, 107-128 (1996) · Zbl 0893.73071 · doi:10.1016/0045-7825(96)01035-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.