×

zbMATH — the first resource for mathematics

Anti-plane shear Green’s functions for an isotropic elastic half-space with a material surface. (English) Zbl 1194.74032
Summary: This paper presents analytical Green’s function solutions for an isotropic elastic half-space subject to anti-plane shear deformation. The boundary of the half-space is modeled as a material surface, for which the Gurtin-Murdoch theory for surface elasticity is employed. By using Fourier cosine transform, analytical solutions for a point force applied both in the interior or on the boundary of the half-space are derived in terms of two particular integrals. Through simple numerical examples, it is shown that the surface elasticity has an important influence on the elastic field in the half-space. The present Green’s functions can be used in boundary element method analysis of more complicated problems.

MSC:
74E10 Anisotropy in solid mechanics
74B99 Elastic materials
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramovitz, M.; Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, (1964) · Zbl 0171.38503
[2] Brebbia, C. A.; Walker, S.: The boundary element technique in engineering, (1979)
[3] Cammarata, R. C.: Surface and interface stress effects in thin films, Progress in surface science 46, 1-38 (1994)
[4] Gaul, L.; Kögl, M.; Wagner, M.: Boundary element methods for engineers and scientists, (2003) · Zbl 1071.65162
[5] Gibbs, J.W., 1961. The Scientific Papers of J. Willard Gibbs, vol. I, Thermodynamics. Dover, New York. · Zbl 0098.20905
[6] Gurtin, M. E.; Murdoch, A. I.: A continuum theory of elastic material surfaces, Archive for rational mechanics and analysis 57, 291-323 (1975) · Zbl 0326.73001
[7] Gurtin, M. E.; Murdoch, A. I.: Surface stress in solids, International journal of solids and structures 14, 431-440 (1978) · Zbl 0377.73001
[8] He, L. H.; Li, Z. R.: Impact of surface stress on stress concentration, International journal of solids and structures 43, 6208-6219 (2006) · Zbl 1120.74501
[9] He, L. H.; Lim, C. W.: Surface Green function for a soft elastic half-space: influence of surface stress, International journal of solids and structures 43, 132-143 (2006) · Zbl 1119.74311
[10] He, L. H.; Lim, C. W.; Wu, B. S.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness, International journal of solids and structures 41, 847-857 (2004) · Zbl 1075.74576
[11] Kim, C. I.; Schiavone, P.; Ru, C. Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution, Journal of applied mechanics 77, 021011 (2010) · Zbl 1273.74456
[12] Koguchi, H.: Surface Green function with surface stresses and surface elasticity using stroh’s formalism, Journal of applied mechanics 75, 061014 (2008)
[13] Li, Z. R.; Lim, C. W.; He, L. H.: Stress concentration around a nano-scale spherical cavity in elastic media: effect of surface stress, European journal of mechanics, A/solids 25, 260-270 (2006) · Zbl 1087.74030
[14] Lim, C. W.; He, L. H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness, International journal of mechanical science 46, 1715-1726 (2004) · Zbl 1098.74640
[15] Lim, C. W.; Li, Z. R.; He, L. H.: Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress, International journal of solids and structures 43, 5055-5065 (2006) · Zbl 1120.74380
[16] Lü, C. F.; Chen, W. Q.; Lim, C. W.: Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies, Composites science and technology 69, 1124-1130 (2009)
[17] Lü, C. F.; Lim, C. W.; Chen, W. Q.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory, International journal of solids and structures 46, 1176-1185 (2009) · Zbl 1236.74189
[18] Miller, R. E.; Shenoy, V. B.: Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11, 139-147 (2000)
[19] Mindlin, R. D.: High frequency vibrations of plated, crystal plates, , 73-84 (1963)
[20] Ou, Z. Y.; Wang, G. F.; Wang, T. J.: Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings, European journal of mechanics, A/solids 28, 110-120 (2009) · Zbl 1155.74309
[21] Telles, J. C. F.; Brebbia, C. A.: Boundary element solution for half-plane problems, International journal of solids and structures 17, 1149-1158 (1981) · Zbl 0472.73095
[22] Wang, G. F.; Feng, X. Q.: Effects of surface stresses on contact problems at nanoscale, Journal of applied physics 101, 013510 (2007)
[23] Zhao, X. J.; Rajapakse, R. K. N.D.: Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects, International journal of engineering science 47, 1433-1444 (2009) · Zbl 1213.74243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.