zbMATH — the first resource for mathematics

Wishart distributions for decomposable graphs. (English) Zbl 1194.62078
Summary: When considering a graphical Gaussian model \({\mathcal N}_G\) Markov with respect to a decomposable graph \(G\), the parameter space of interest for the precision parameter is the cone \(P_G\) of positive definite matrices with fixed zeros corresponding to the missing edges of \(G\). The parameter space for the scale parameter of \({\mathcal N}_G\) is the cone \(Q_G\), dual to \(P_G\), of incomplete matrices with submatrices corresponding to the cliques of \(G\) being positive definite. We construct on the cones QG and PG two families of Wishart distributions, namely the Type I and Type II Wisharts. They can be viewed as generalizations of the hyper Wishart and the inverse of the hyper inverse Wishart as defined by A. P. Dawid and S. L. Lauritzen [Ann. Stat. 21, No. 3, 1272–1317 (1993; Zbl 0815.62038)]. We show that the Type I and II Wisharts have properties similar to those of the hyper and hyper inverse Wishart. Indeed, the inverse of the Type II Wishart forms a conjugate family of priors for the covariance parameter of the graphical Gaussian model and is strong directed hyper Markov for every direction given to the graph by a perfect order of its cliques, while the Type I Wishart is weak hyper Markov. Moreover, the inverse Type II Wishart as a conjugate family presents the advantage of having a multidimensional shape parameter, thus offering flexibility for the choice of a prior.
Both Type I and II Wishart distributions depend on multivariate shape parameters. A shape parameter is acceptable if and only if it satisfies a certain eigenvalue property. We show that the sets of acceptable shape parameters for a noncomplete \(G\) have dimension equal to at least one plus the number of cliques in \(G\). These families, as conjugate families, are richer than the traditional Diaconis-Ylvisaker conjugate families which all have a shape parameter set of dimension one. A decomposable graph which does not contain a three-link chain as an induced subgraph is said to be homogeneous. In this case, our Wisharts are particular cases of the Wisharts on homogeneous cones as defined by S. A. Andersson and G. G. Wojnar [J. Theor. Probab. 17, No. 4, 781–818 (2004; Zbl 1058.62044)] and the dimension of the shape parameter set is even larger than in the nonhomogeneous case: it is indeed equal to the number of cliques plus the number of distinct minimal separators. Using the model where \(G\) is a three-link chain, we show by computing a 7-tuple integral that in general we cannot expect the shape parameter sets to have dimension larger than the number of cliques plus one.

62H05 Characterization and structure theory for multivariate probability distributions; copulas
05C90 Applications of graph theory
62H99 Multivariate analysis
Full Text: DOI arXiv
[1] Abramowitz, M. and Stegun, I. A., eds. (1965). Handbook of Mathematical Functions. U.S. Government Printing Office, Washington.
[2] Andersson, S. A. (1999). Private communication.
[3] Andersson, S. A. and Wojnar, G. G. (2004). Wishart distributions on homogeneous cones. J. Theoret. Probab. 17 781–818. · Zbl 1058.62044
[4] Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. Wiley, Chichester. · Zbl 0387.62011
[5] Consonni, G. and Veronese, P. (2001). Conditionally reducible natural exponential families and enriched conjugate priors. Scand. J. Statist. 28 377–406. · Zbl 0973.62011
[6] Consonni, G. and Veronese, P. (2003). Enriched conjugate and reference priors for the Wishart family on symmetric cones. Ann. Statist. 31 1491–1516. · Zbl 1046.62054
[7] Dawid, A. and Lauritzen, S. L. (1993). Hyper-Markov laws in the statistical analysis of decomposable graphical models. Ann. Statist. 21 1272–1317. · Zbl 0815.62038
[8] Dempster, A. P. (1972). Covariance selection. Biometrics 28 157–175.
[9] Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann. Statist. 7 269–281. · Zbl 0405.62011
[10] Gröne, R., Johnson, C. R., de Sá, E. and Wolkowicz, H. (1984). Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58 109–124. · Zbl 0547.15011
[11] Lauritzen, S. L. (1996). Graphical Models. Oxford Univ. Press. · Zbl 0907.62001
[12] Letac, G. and Massam, H. (2006). Extremal rays and duals for cones of positive definite matrices with prescribed zeros. Linear Algebra Appl. 418 737–750. · Zbl 1106.05063
[13] Massam, H. and Neher, E. (1997). On transformations and determinants of Wishart variables on symmetric cones. J. Theoret. Probab. 10 867–902. · Zbl 0890.60016
[14] Muirhead, R. (1982). Aspects of Multivariate Statistical Theory . Wiley, New York. · Zbl 0556.62028
[15] Olkin, I. and Rubin, H. (1964). Multivariate beta distributions and independence properties of the Wishart distribution. Ann. Math. Statist. 35 261–269. · Zbl 0128.14002
[16] Roverato, A. (2000). Cholesky decomposition of a hyper inverse Wishart matrix. Biometrika 87 99–112. JSTOR: · Zbl 0974.62047
[17] Shanbag, D. N. (1988). The Davidson-Kendall problem and related results on the structure of the Wishart distribution. Austral. J. Statist. 30A 272–280. · Zbl 0694.62024
[18] Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley, Chichester. · Zbl 0732.62056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.