×

zbMATH — the first resource for mathematics

Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. (English) Zbl 1194.37154
Summary: This survey article reviews the theory and application of homoclinic orbits to equilibria in reversible continuous-time dynamical systems, where the homoclinic orbit and the equilibrium are both reversible. The focus is on even-order reversible systems in four or more dimensions. Local theory, generic argument, and global existence theories are examined for each qualitatively distinct linearisation. Several recent results, such as coalescence caused by non-transversality and the reversible orbit-flip bifurcation are covered. A number of open problems are highlighted. Applications are reviewed to systems arising from a variety of disciplines. With the aid of numerical methods, three examples are presented in detail, one of which is infinite dimensional.

MSC:
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
76E30 Nonlinear effects in hydrodynamic stability
78A99 General
Software:
HomCont
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J.; Segur, H., Solitons and the inverse scattering transform, (1981), SIAM Philadelphia · Zbl 0299.35076
[2] Alexander, J.C.; Grillakis, M.G.; Jones, C.K.R.T.; Sandstede, B., Stability of pulses on optical fibres with phase-sensative amplifiers, Z. angew. math. phys., 48, 175-192, (1997) · Zbl 0882.35110
[3] Amick, C.J.; Kirchgassner, K., A theory of solitary water-waves in the presence of surface tension, Arch. rat. mech. anal., 105, (1989) · Zbl 0631.76017
[4] Amick, C.J.; McLeod, J.B., A singular perturbation problem in water-waves, Stability appl. anal. continuous media, 1, 127-148, (1991)
[5] Amick, C.J.; Toland, J.F., Global uniqueness of homoclinic orbits for a class of 4th order equations, Z. angew. math. phys., 43, 591-597, (1992) · Zbl 0766.34027
[6] Amick, C.J.; Toland, J.F., Homoclinic orbits in the dynamic phase-space analogy of an elastic strut, Eur. J. appl. mech., 3, 97-114, (1992) · Zbl 0755.73023
[7] Amick, C.J.; Toland, J.F., Solitary waves with surface tension I: trajectories homoclinic to periodic orbits in four dimensions, Arch. rat. mech. anal., 118, 37-69, (1992) · Zbl 0759.76015
[8] Antman, S.S., Nonlinear problems of elasticity, () · Zbl 0989.74039
[9] Arnol’d, V.I.; Sevryuk, M.B., Oscillations and bifurcations in reversible systems, (), Mir, Moscow
[10] Bakholdin, I.; Ill’ichev, A.T., Radiation and modulational instability described by the fifth-order KdV equation, Theoret. comp. fluid dynamics, 200, 1-15, (1996)
[11] Beale, T.J., Solitary water waves with capillary ripples at infinity, Comm. pure appl. math., 64, 211-257, (1991) · Zbl 0727.76019
[12] Belitskii, G.R., Equivalence and normal forms of germs of smooth mappings, Uspekhi mat. nauk, 33, (1978) · Zbl 0385.58007
[13] English transl. in: Russian Math. Surveys 33 (1).
[14] Belyakov, L.A., Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero, Mat. zam., 36, 838-843, (1984) · Zbl 0598.34035
[15] Belyakov, L.A.; Shil’nikov, L.P., Homoclinic curves and complex solitary waves, Selecta math. soviet., 9, 219-228, (1990) · Zbl 0739.35086
[16] Benjamin, T.B., The solitary wave with surface tension, Quart. appl. math., 40, 231-234, (1982) · Zbl 0489.76029
[17] Beyn, W.-J., The numerical computation of connecting orbits in dynamical systems, IMA J. numer. anal., 9, 379-405, (1990) · Zbl 0706.65080
[18] Blackmore, G.W.; Hunt, A, Principles of localised buckling for a strut on an elastoplastic foundation, Trans. ASME, 63, 234-239, (1996) · Zbl 0873.73037
[19] Boyd, J.P., Weakly non-local solitons for capillary-gravity water waves: fifth-degree Korteweg de Vries equation, Physica D, 48, 129-146, (1991) · Zbl 0728.35100
[20] Brézis, H.; Nirenberg, L., Remarks on finding critical points, Comm. pure appl. math., 44, 939-963, (1991) · Zbl 0751.58006
[21] Buffoni, B., Cascades of homoclinic orbits for Hamiltonian systems: further properties, Nonlinearity, 6, 1091-1092, (1993) · Zbl 0813.58020
[22] Buffoni, B., Infinitely many large-amplitude homoclinic orbits for a class of autonomous Hamiltonian systems, J. differential equations, 121, 109-120, (1995) · Zbl 0832.34032
[23] Buffoni, B., Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods, Nonlinear anal. TMA, 26, 443-462, (1996) · Zbl 0838.49004
[24] Buffoni, B.; Champneys, A.R.; Toland, J.F., Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system, J. dyn. differential equations, 8, 221-281, (1996) · Zbl 0854.34047
[25] Buffoni, B.; Groves, M.D., A multiplicity result for solitary gravity-capiliary water waves via critical-point theory, (1996), School of Mathematical Science, University of Bath, preprint · Zbl 0965.76015
[26] Buffoni, B.; Groves, M.D.; Toland, J.F., A plethora of solitary gravity-capillary water waves with nearly critical bond and Froude numbers, Phil. trans. roy. soc. London A, 354, 575-607, (1996) · Zbl 0861.76012
[27] Buffoni, B.; Séré, E., A global condition for quasi-random behaviours in a class of conservative systems, Comm. pure appl. math., 49, 285-305, (1996) · Zbl 0860.58027
[28] Buffoni, B.; Toland, J.F., Global existence of homoclinic and periodic orbits for a class of autonomous Hamiltonian systems, J. differential equations, 118, (1995) · Zbl 0828.34032
[29] Buryak, A.V.; Akhmediev, N.N., Stability criterion for stationary bound states of solitons with radiationless oscillating tails, Phys. rev. E, 51, 3572-3578, (1995)
[30] Buryak, A.V.; Champneys, A.R., On the stability of solitary wave solutions of the 5th-order KdV equation, Phys. lett. A, 223, 58-62, (1997) · Zbl 1044.35516
[31] Buryak, A.V.; Kivshar, Y.S., Solitons due to second harmonic generation, Phys. lett. A, 197, 407-412, (1995) · Zbl 1020.35512
[32] Buryak, A.V.; Kivshar, Y.S., Twin-hole dark solitons, Phys. rev. A, 51, R41-R44, (1995)
[33] Buryak, A.V.; Kivshar, Y.S.; Parker, D.F., Coupling between dark and bright solitons, Phys. lett. A, 215, 57-62, (1996)
[34] Buryak, A.V.; Kivshar, Y.S.; Trillo, S., Optical solitons supported by competing nonlinearities, Opt. lett., 20, 1961-1963, (1995)
[35] Byatt-Smith, J.G.B., On the change of amplitude of interacting solitary waves, J. fluid mech., 182, 467-483, (1987) · Zbl 0645.76022
[36] Calvo, D.C.; Akylas, T.R., On the formation of bound states by interacting nonlocal solitary waves, Physica D, 101, 270-288, (1997) · Zbl 0899.76090
[37] Champneys, A.R., Subsidiary homoclinic orbits to a saddle-focus for reversible systems, Int. J. bifurc. chaos, 4, 1447-1482, (1994) · Zbl 0873.34037
[38] Champneys, A.R.; Groves, M.D., A global investigation of solitary wave solutions to a two-parameter model for water waves, J. fluid mech., 342, 199-229, (1997) · Zbl 0913.76010
[39] Champneys, A.R.; Kuznetsov, Yu.A., Numerical detection and continuation of codimension-two homoclinic bifurcations, Int. J. bifurc. chaos, 4, 795-822, (1994) · Zbl 0873.34030
[40] Champneys, A.R.; Kuznetsov, Yu.A.; Sandstede, B., A numerical toolbox for homoclinic bifurcation analysis, Int. J. bifurc. chaos, 6, 867-887, (1996) · Zbl 0877.65058
[41] Champneys, A.R.; Lord, G.L., Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem, Physica D, 102, 101-124, (1997) · Zbl 0888.34040
[42] Champneys, A.R.; McKenna, P.J., On solitary waves of a piece-wise linear suspended beam model, Nonlinearity, 10, 1763-1782, (1997) · Zbl 0903.73031
[43] Champneys, A.R.; Spence, A., Hunting for homoclinic orbits in reversible systems: a shooting technique, Adv. comput. math., 1, 81-108, (1993) · Zbl 0824.65080
[44] Champneys, A.R.; Thompson, J.M.T., A multiplicity of localised buckling modes for twisted rod equations, (), 2467-2491 · Zbl 0872.73015
[45] Champneys, A.R.; Toland, J.F., Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems, Nonlinearity, 6, 665-772, (1993) · Zbl 0789.58035
[46] Champneys, A.R.; Yew, A.C.; McKenna, P.J., Localised solutions of a coupled first and second harmonic nonlinear Schrödinger system, (), submitted · Zbl 0923.35169
[47] Chen, Y.; McKenna, P.J., Travelling waves in a nonlinearly suspended beam: some computational results and four open questions, Phil. trans. roy. soc. London A, 355, 2175-2184, (1997) · Zbl 0895.35100
[48] Chen, Y.; McKenna, P.J., Travelling waves in a nonlinearly suspended beam: theoretical results and numerical observations, J. differential equations, 136, 325-355, (1997) · Zbl 0879.35113
[49] Christov, C.I., A method for the identification of homoclinic trajectories, (), 571-577
[50] Christov, C.J.; Bekyarov, K.L., A Fourier-series mehtod for solving soliton problems, SIAM J. sci. stat. comp., 11, 631-647, (1992) · Zbl 0707.65090
[51] Christov, C.I.; Maugin, G.A.; Verlade, M.G., Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. rev. E, 54, 3621-3638, (1996)
[52] Churchill, R.C.; Rod, D.L., Pathology in dynamical systems III, analytic Hamiltonians, J. differential equations, 37, 23-38, (1980) · Zbl 0421.58015
[53] Coti Zelati, V.; Ekeland, I.; Séré, É., A variational approach to homoclinic orbits in Hamiltonian systems, Math. ann., 288, 133-160, (1990) · Zbl 0731.34050
[54] Craig, W.; Groves, M.D., Hamiltonian long-wave approximations to the water-wave problem, Wave motion, 19, 367-389, (1994) · Zbl 0929.76015
[55] Deng, B., Homoclinic twisting bifurcations and cusp horseshoe maps, J. dyn. differential equations, 5, 417-468, (1993) · Zbl 0782.34042
[56] Devaney, R.L., Homoclinic orbits in Hamiltonian systems, J. differential equation, 21, 431-438, (1976) · Zbl 0343.58005
[57] Devaney, R.L., Reversible diffeomorphisms and flows, Trans. amer. math. soc., 218, 89-113, (1976) · Zbl 0363.58003
[58] Devaney, R.L., Blue sky catastrophes in reversible and Hamiltonian systems, Indiana univ. math. J., 26, 247-263, (1977) · Zbl 0362.58006
[59] Dias, F., Capillary-gravity periodic and solitary waves, J. phys. fluids, 6, 2239-2241, (1995) · Zbl 0825.76089
[60] Dias, F.; Iooss, G., Capillary-gravity interfacial waves in infinite depth, Eur. J. mech. B, 15, 367-393, (1996) · Zbl 0887.76014
[61] Dias, F.; Menasce, D.; Vandenbroek, J.M., Numerical study of capillary-gravity solitary waves, Eur. J. mech. B, 15, 17-36, (1996) · Zbl 0863.76011
[62] Doedel, E.; Keller, H.B.; Kernevez, J.P., Numerical analysis and control of bifurcation problems: (I) bifurcation in finite dimensions, Int. J. bifurc. chaos, 1, 493-520, (1991) · Zbl 0876.65032
[63] Doedel, E.; Keller, H.B.; Kernevez, J.P., Numerical analysis and control of bifurcation problems: (II) bifurcation in infinite dimensions, Int. J. bifurc. chaos, 1, 745-772, (1991) · Zbl 0876.65060
[64] Elphick, C.; Tirapegui, E.; Brachet, M.; Coullet, P.; Iooss, G., A simple global characterisation for normal forms of singular vector fields, Physica D, 29, 95-127, (1987) · Zbl 0633.58020
[65] Fiedler, B.; Turaev, D., Coalescence of reversible homoclinic orbits causes elliptic resonance, Int. J. bifurc. chaos, 6, 1007-1027, (1996) · Zbl 0876.34057
[66] Friedman, M.J.; Doedel, E., Numerical computation of invariant manifolds connecting fixed points, SIAM J. numer. anal., 28, 789-808, (1991) · Zbl 0735.65054
[67] Grimshaw, R.; Joshi, N., Weakly nonlocal solitary waves in a singularly perturbed Korteweg-de Vries equation, SIAM J. appl. math., 55, 124-135, (1995) · Zbl 0814.34043
[68] Grimshaw, R.; Malomed, B.; Benilov, E., Solitary saves with damped oscillatory tails: an analysis of the fifth-order Korteweg-de Vries equation, Physica D, 77, 473-485, (1994) · Zbl 0824.35113
[69] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, ()
[70] Haelterman, M.; Trillo, S.; Ferro, P., Multiple soliton bound states and symmetry breaking in quadratic media, Opt. lett., 22, 84-86, (1997)
[71] Hammersley, J.M.; Mazzarino, G., Computational aspects of some autonomous differential equations, (), 19-37 · Zbl 0682.65048
[72] Härterich, J., Kaskaden homokliner orbits in reversiblen dynamischen systemen, ()
[73] Härterich, J., Cascades of reversible homoclinic orbits to a saddle-focus equilibrium, Physica D, 112, 187-200, (1997), these proceedings · Zbl 1194.34083
[74] Hasimoto, H., Kagaku, 40, 401, (1970), (in Japanese)
[75] Hastings, S.P., Use of simple shooting to obtain chaos, Physica D, 62, 87-93, (1993) · Zbl 0786.34049
[76] He, H.; Werner, N.J.; Drummond, P.D., Simultaneous solitary-wave solutions in nonlinear parametric waveguide, Phys. rev. E, 54, 896-911, (1996)
[77] Hofer, H.; Toland, J.F., Free oscillations of prescribed energy at a saddle-point of the potential in Hamiltonian mechanics, Delft prog. report, 10, 238-249, (1985) · Zbl 0592.70020
[78] Holmes, P.J., Periodic, nonperiodic and irregular motions in Hamiltonian systems, Rocky mountain J. math., 10, 382-404, (1980)
[79] Homburg, A.J.; Kokubu, H.; Krupa, M., The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit, Ergodic theory dynamical syst., 14, 667-693, (1994) · Zbl 0864.58044
[80] Hunt, G.W.; Bolt, H.M.; Thompson, J.M.T., Structural localisation phenomena and the dynamical phase-space analogy, (), 245-267 · Zbl 0697.73043
[81] Hunt, G.W.; Lucena Neto, E., Localised buckling in long axially-loaded cylinders, J. mech. phys. solids, 39, 881-894, (1991) · Zbl 0825.73249
[82] Hunt, G.W.; Wadee, M.K., Comparative Lagrangian formulations for localised buckling, (), 485-502 · Zbl 0753.73037
[83] Hunt, G.W.; Wadee, M.K.; Shicolas, N., Localised elasticae for the strut on the linear foundation, ASME J. appl. mech., 60, 1033-1038, (1993) · Zbl 0803.73017
[84] Hunter, J.K.; Scheurle, J., Existence of perturbed solitary wave solutions to a model equation for water-waves, Physica D, 32, 253-268, (1988) · Zbl 0694.35204
[85] Ill’ichev, A.T.; Semenov, A.Y., Stability of solitary waves in dispersive media described by a fifth-order evolution equation, Theoret. comp. fluid dynamics, 3, 307-326, (1992) · Zbl 0755.76022
[86] Iooss, G., A codimension-two bifurcation for reversible vector fields, Fields institute comm., 4, 201-217, (1995) · Zbl 0922.58057
[87] Iooss, G., Existence d’orbites homoclines á un équilibre elliptique pour un système réversible, C. R. acad. sic. Paris, ser. 1, 324, 993-997, (1997) · Zbl 0874.34044
[88] Iooss, G.; Kirchgässner, K., Bifurcation d’ondes solitaires en présence d’une faible tension superficielle, C. R. acad. sci. Paris, ser. 1, 311, 265-268, (1990) · Zbl 0705.76020
[89] Iooss, G.; Kirchgassner, K., Water waves for small surface tension: an approach via normal form, (), 200-267 · Zbl 0767.76004
[90] Iooss, G.; Peroueme, M.C., Perturbed homoclinic solutions in reversible 1:1 resonance vector fields, J. differential equations, 102, 62-88, (1993) · Zbl 0792.34044
[91] Kakutani, T.; Ono, H., Weak non-linear hydromagnetic waves in cold collisionless plasma, J. phys. soc. Japan, 26, 219-1305, (1969)
[92] Karlsson, M.; Höök, A., Soliton-like pulses governed by fourth order dispersion in optical fibres, Opt. com., 104, 303-307, (1994)
[93] Kawahara, T., J. phys. soc. Japan, 33, 260, (1972)
[94] Kent, P.; Elgin, J., Noose bifurcations of periodic orbits, Nonlinearity, 4, 1045-1061, (1991) · Zbl 0747.34024
[95] Kent, P.; Elgin, J., A shilnikov-type analysis in a system with symmetry, Phys. lett. A, 152, 28-32, (1991)
[96] Kent, P.; Elgin, J., Travelling-wave solutions of the Kuramoto-Sivashinsky equation: period multiplying bifurcations, Nonlinearity, 4, 899-919, (1992) · Zbl 0771.35006
[97] Kichenassamy, S., Existence of solitary waves for water-wave models, Nonlinearity, 10, 133-151, (1997) · Zbl 0906.76012
[98] Kichenassamy, S.; Olver, P.J., Existence and non-existence of solitary wave solutions to higher-order model evolution equations, SIAM J. math. anal., 23, 1141-1166, (1996) · Zbl 0755.76023
[99] Kirchgassner, K., Nonlinearly resonant surface waves and homoclinc bifurcation, Adv. appl. mech., 26, 135-181, (1988) · Zbl 0671.76019
[100] Kisaka, M.; Kokubu, H.; Oka, H., Supplement to homoclinic doubling bifurcation in vector fields, (), 92-116 · Zbl 0792.58028
[101] Knobloch, J., Bifurcation of degenerate homoclinics in reversible and conservative systems, J. dynamics differential equations, 9, 444-472, (1997) · Zbl 0884.34057
[102] Koltsova, O.Yu.; Lerman, L.M., Periodic orbits and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center, Int. J. bifurc. chaos, 5, 397-408, (1995) · Zbl 0885.58025
[103] Koltsova, O.Yu.; Lerman, L.M., Families of transverse Poincaré homoclinic orbits in 2N-dimensional Hamiltonian systems close to the system with a loop to a saddle-center, Int. J. bifurc. chaos, 6, 991-1006, (1996) · Zbl 0874.58018
[104] Kuramoto, Y.; Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. theoret. phys., 55, 356-369, (1976)
[105] Kutz, J.N.; Hile, C.V.; Kath, W.L.; Li, R.-D.; Kumar, P., Pulse propagation in nonlinear optical fiber-lines that employ phase-sensative parametric amplifiers, J. opt. soc. amer. B, 11, 2112-2123, (1992)
[106] Kutz, J.N.; Kath, W.L., Stability of pulses in nonlinear optical fibres using phase sensative amplifiers, SIAM J. appl. math., 56, 611-626, (1996) · Zbl 0851.35124
[107] Kuznetsov, Yu.A., Elements of applied bifurcation theory, (1995), Springer New York · Zbl 0829.58029
[108] Lau, Y.-T., COCOON bifurcation for systems with two fixed points, Int. J. bifurc. chaos, 2, 543, (1992)
[109] Lerman, L.M., Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus, Chaos, 1, 174-180, (1991) · Zbl 0899.58053
[110] Lerman, L.M., Hamiltonian systems with a seperatrix loop of a saddle-center, Russian acad. sci. sb. math., 10, 297, (1991) · Zbl 0743.58017
[111] originally published in Russian as: Matemat. Sbornik 184, 105-138.
[112] Levandorsky, S., 5th-order KdV equation with pure power nonlinearity, (1996), Department of Pure Mathematics, Brown University, preprint
[113] Levandorsky, S., Stability and instability of fourth order solitary waves, (1996), Department of Pure Mathematics, Brown University, preprint
[114] Lilbre, J.; Martinez, R.; Simó, C., Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L2 in the restricted three-body problem, J. differential equations, 58, 104-156, (1985) · Zbl 0594.70013
[115] Lilbre, J.; Simo, C., On the Hénon-Heiles potential, (), 183-206
[116] Lin, X.-B., Using Melnikov’s method to solve shil’Nikov’s problems, (), 295-325 · Zbl 0714.34070
[117] Lin, L.; Adams, G.G., Beam on tensionless elastic foundation, J. eng. mech., 113, 542-553, (1986)
[118] Lions, P.L.; Lions, P.L., The concentration-compactness principle in the calculus of variations, Ann. inst. H. Poincaré, anal. nonlinearity, Ann. inst. H. Poincaré, anal. nonlinearity, 1, 223-283, (1984), part 1 · Zbl 0704.49004
[119] Lions, P.L.; Lions, P.L., The concentration-compactness principle in the calculus of variations, Rev. mat. iberoamericana, Rev. mat. iberoamericana, 1, 2, 45-121, (1985), part 2 · Zbl 0704.49006
[120] Lombardi, E., Homoclinic orbits to small periodic orbits for a class of reversible systems, (), 1035-1054 · Zbl 0863.34049
[121] Lombardi, E., Homoclinic orbits to exponentially small periodic orbits for a class of reversible systems: application to water waves, Arch. rat. mech. anal., 137, 227-304, (1997) · Zbl 0888.58039
[122] Lombardi, E., Non persistence of homoclinic connections for perturbed integrable reversible systems, J. dyn. differential equations, (1997), to appear
[123] Lord, G.J.; Champneys, A.R.; Hunt, G.W., Computation of homoclinic orbits in PDEs; an application to cylindrical shell buckling, ANM research report 6.97, (1997), SIAM J. Sci. Comp., submitted · Zbl 0894.73040
[124] Lord, G.J.; Champneys, A.R.; Hunt, G.W., Computation of localised post-buckling in long axially compressed cylindrical shells, (), 2137-2150 · Zbl 0894.73040
[125] Malomed, B.; Vanden-Broeck, J.-M., Solitary wave interactions for the fifth-order KdV equation, Contemp. math., 200, 133-143, (1996) · Zbl 0860.76016
[126] Marchant, T.R.; Smyth, N.F., Soliton interaction for the extended Korteweg-de Vries equation, IMA J. appl. math., 556, 157-176, (1996) · Zbl 0857.35113
[127] McKenna, P.J.; Walter, W., Traveling waves in a suspension bridge, SIAM J. appl. math., 50, 703-715, (1990) · Zbl 0699.73038
[128] Michelson, D., Steady solutions of the Kuramoto-Sivashinsky equation, Physica D, 19, 89-111, (1986) · Zbl 0603.35080
[129] Mielke, A., Hamiltonian and Lagrangian flows on center manifolds with applications in elliptic variational problems, () · Zbl 0747.58001
[130] Mielke, A.; Holmes, P., Spatially complex equilibria of buckled rods, Arch. rat. mech. anal., 101, 319-348, (1988) · Zbl 0655.73029
[131] Mielke, A.; Holmes, P.; O’Reilly, O., Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. dyn. differential equations, 4, 95-126, (1992) · Zbl 0749.58022
[132] Ostrovsky, L.A.; Gorshkov, K.A.; Papko, V.V.; Pikovsky, A.S., On the existence of stationary solitons, Phys. lett. A, 74, 177-179, (1979)
[133] Peletier, L.A.; Troy, W.C., Spatial patterns described by the extended Fisher-Kolmogorov (EFK) equation: kinks, Differential int. equations, 8, 1279-1304, (1995) · Zbl 0826.34056
[134] Peletier, L.A.; Troy, W.C., A topological shooting method and the existence of kinks of the extended firsher-Kolmogorov equation, (1995), Mathematics Institute, University of Leiden, Report W95-08 · Zbl 0862.34030
[135] Peterhof, D.; Sandstede, B.; Scheel, A., Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, () · Zbl 0908.35048
[136] Pomeau, Y.; Ramani, A.; Grammaticos, B., Structrual stability of the Korteweg-de Vries solitons under a singular perturbation, Physica D, 31, 127-134, (1988) · Zbl 0695.35161
[137] Sandstede, B., Verzweigungstheorie homokliner verdopplungen, () · Zbl 0850.58012
[138] Sandstede, B., Center manifolds for homoclinic solutions, (), preprint No. 186 · Zbl 0974.34049
[139] Sandstede, B., Instability of localised buckling modes in a one-dimensional strut model, (), 2083-2097 · Zbl 0895.35102
[140] Sandstede, B., Stability of multiple-pulse solutions, Trans. amer. math. soc., (1997), to appear
[141] Sandstede, B.; Jones, C.K.R.T.; Alexander, J.C., Existence and stability of N-pulses on optical fibres with phase-sensative amplifiers, (), 167-206, preprint · Zbl 0938.35184
[142] Sevryuk, M.B., Reversible systems, (1986), Springer New York · Zbl 0661.58002
[143] Shil’nikov, L.P., A case of the existence of a countable number of periodic motions, Sov. math. dokl., 6, 163-166, (1965) · Zbl 0136.08202
[144] Shil’nikov, L.P., A contribution to the problem of the structure of a rough equilibrium state of saddle-focus type, Math. USSR sbornik, 10, 91-102, (1970) · Zbl 0216.11201
[145] Sivashinsky, G.I., Nonlinear analysis of hydrodynamic instability in laminar flames — I derivation of basic equations, Acta astronautica, 4, 1177-1206, (1977) · Zbl 0427.76047
[146] Smale, S., Differentiable dynamical systems, Bull. am. math. soc., 73, 747-817, (1967) · Zbl 0202.55202
[147] Stoffer, D.M., Variable steps for reversible integration methods, Computing, 55, 1-22, (1995) · Zbl 0831.65085
[148] Sun, S.M., Existence of a generalised solitary wave solution for water waves with positive bond number less than \(13\), J. math. anal. appl., 156, 471-504, (1991) · Zbl 0725.76028
[149] Sun, S.M., On the oscillatory tails with arbitrary phase shift for solutions of the perturbed KdV equations, (1996), Virginia Polytechhnic Institute and State University, preprint
[150] Sun, S.M.; Shen, M.C., Exponentially small estimate for the amplitude of capillary ripples of generalised solitary waves, J. math. anal. appl., 172, 533-566, (1993) · Zbl 0772.76010
[151] Swinnerton-Dyer, H.P.F.; Sparrow, C.T., The Falkner-Skan equation. 1. the creation of strange invariant-sets, J. differential equation, 119, 336-394, (1995) · Zbl 0828.34028
[152] Taha, T.R.; Ablowitz, M.J., Analytical and numerical aspects of certain nonlinear evolution equations, J. comp. phys., 55, 203-253, (1984) · Zbl 0541.65082
[153] Thompson, J.M.T.; Champneys, A.R., From helix to localised writhing in the torsional post-buckling of elastic rods, (), 117-138 · Zbl 0946.74025
[154] Turaev, D.V.; Shil’nikov, L.P., On Hamiltonian systems with homoclinic saddle curves, Soviet. math. dokl., 39, 165-168, (1989) · Zbl 0689.58013
[155] Vanderbauwhede, A., Subharmonic branching in reversible systems, SIAM J. math. anal., 21, 954-979, (1990) · Zbl 0707.34038
[156] Vanderbauwhede, A.; Fiedler, B., Homoclinic period blow-up in reversible and conservative systems, Z. agnew. math. phys., 43, 292-318, (1992) · Zbl 0762.34023
[157] van der Heijden, G.H.M.; Thompson, J.M.T., Lock-on to tape-like behaviour in the torisional buckling of anisotropic rods, Physica D, (1997), these proceedings · Zbl 1194.37167
[158] van der Heijden, G.H.M.; Champneys, A.R.; Thompson, J.M.T., Load deflection characteristics of localised buckling modes in rods with non-circular cross-section, SIAM J. sci. comp., (1997), to appear · Zbl 0902.73044
[159] Volpert, A.I.; Volpert, V.A.; Volpert, V.A., Traveling wave solutions of parabolic systems, () · Zbl 1017.34014
[160] Wiggins, S., Global bifurcations and chaos: analytical methods, (1988), Springer New York · Zbl 0661.58001
[161] Yamaki, N., Elastic stability of circular cylindrical shells, () · Zbl 0544.73062
[162] Yang, T.-S.; Akylas, T.R., On asymmetric gravity-capillary solitary waves, J. fluid mech., 330, 215-232, (1997) · Zbl 0913.76011
[163] Zufiria, J.A., Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth, J. fluid mech., 184, 183-206, (1987) · Zbl 0634.76016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.