×

Geometric intersection number and analogues of the curve complex for free groups. (English) Zbl 1194.20046

From the authors’ summary: “For the free group \(F_N\) of finite rank \(N\geq 2\) we construct a canonical Bonahon-type, continuous and \(\text{Out}(F_N)\)-invariant geometric intersection form \(\langle\,,\,\rangle\colon\overline{\text{cv}}(F_N)\times\text{Curr}(F_N)\to\mathbb{R}_{\geq 0}\). Here \(\overline{\text{cv}}(F_N)\) is the closure of unprojectivized Culler-Vogtmann Outer space \(\text{cv}(F_N)\) in the equivariant Gromov-Hausdorff convergence topology (or, equivalently, in the length function topology). It is known that \(\overline{\text{cv}}(F_N)\) consists of all very small minimal isometric actions of \(F_N\) on \(\mathbb{R}\)-trees. The projectivization of \(\overline{\text{cv}}(F_N)\) provides a free group analogue of Thurston’s compactification of Teichmüller space.”
To be precise the authors prove: Let \(N\geq 2\). There exists a unique continuous map \(\langle\,,\,\rangle\colon\overline{\text{cv}}(F_N)\times\text{Curr}(F_N)\to\mathbb{R}_{\geq 0}\) which is \(\mathbb{R}_{\geq 0}\)-homogeneous in the first argument, \(\mathbb{R}_{\geq 0}\)-linear in the second argument, \(\text{Out}(F_N)\)-invariant, and such that for every \(T\in\overline{\text{cv}}(F_N)\) and in every \(g\in F_N\setminus\{1\}\) we have \(\langle T,\eta_g\rangle=\|g\|_T\).
Let \(N\geq 3\). Then the graphs \(\mathcal T_0(F_N)\), \(\mathcal F(F_N)\), \(\mathcal F^*(F_N)\) have infinite diameter.
Particular interest present sections 7 and 8.
The reference list contains 38 items.

MSC:

20F65 Geometric group theory
20E05 Free nonabelian groups
37E25 Dynamical systems involving maps of trees and graphs
57M07 Topological methods in group theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. Behrstock, M Bestvina, M. Clay, Growth of intersection numbers for free group automorphisms · Zbl 1209.20031
[2] M Bestvina, M Feighn, Outer limits
[3] M Bestvina, M Feighn, The topology at infinity of \(\mathrm{Out}(F_n)\), Invent. Math. 140 (2000) 651 · Zbl 0954.55011
[4] M Bestvina, M Feighn, M Handel, A hyperbolic \(\mathrm{Out}(F_n)\)-complex · Zbl 1190.20017
[5] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. \((2)\) 135 (1992) 1 · Zbl 0757.57004
[6] F Bonahon, Bouts des variétés hyperboliques de dimension \(3\), Ann. of Math. \((2)\) 124 (1986) 71 · Zbl 0671.57008
[7] F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139 · Zbl 0653.32022
[8] F Bonahon, Geodesic currents on negatively curved groups (editor R C Alperin), Math. Sci. Res. Inst. Publ. 19, Springer (1991) 143 · Zbl 0772.57004
[9] M M Cohen, M Lustig, Very small group actions on \(\mathbfR\)-trees and Dehn twist automorphisms, Topology 34 (1995) 575 · Zbl 0844.20018
[10] T Coulbois, A Hilion, M Lustig, \(\mathbb R\)-trees and laminations for free groups. I. Algebraic laminations, J. Lond. Math. Soc. \((2)\) 78 (2008) 723 · Zbl 1197.20019
[11] T Coulbois, A Hilion, M Lustig, \(\mathbb R\)-trees and laminations for free groups. II. The dual lamination of an \(\mathbb R\)-tree, J. Lond. Math. Soc. \((2)\) 78 (2008) 737 · Zbl 1198.20023
[12] T Coulbois, A Hilion, M Lustig, \(\mathbb R\)-trees and laminations for free groups. III. Currents and dual \(\mathbb R\)-tree metrics, J. Lond. Math. Soc. \((2)\) 78 (2008) 755 · Zbl 1200.20018
[13] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91 · Zbl 0589.20022
[14] S Francaviglia, Geodesic currents and length compactness for automorphisms of free groups, Trans. Amer. Math. Soc. 361 (2009) 161 · Zbl 1166.20032
[15] D Gaboriau, A Jaeger, G Levitt, M Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425 · Zbl 0946.20010
[16] É Ghys, P de la Harpe, editors, Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990) · Zbl 0731.20025
[17] V Guirardel, Dynamics of \(\mathrm{Out}(F_n)\) on the boundary of outer space, Ann. Sci. École Norm. Sup. \((4)\) 33 (2000) 433 · Zbl 1045.20034
[18] V Guirardel, Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. \((4)\) 38 (2005) 847 · Zbl 1110.20019
[19] U Hamenstädt, Subgroups of \(\mathrm{Out}(F_n)\), Lecture at the workshop “Discrete groups and geometric structures” (2008)
[20] A Hatcher, K Vogtmann, The complex of free factors of a free group, Quart. J. Math. Oxford Ser. \((2)\) 49 (1998) 459 · Zbl 0935.20015
[21] J Hempel, \(3\)-manifolds as viewed from the curve complex, Topology 40 (2001) 631 · Zbl 0985.57014
[22] V Kaimanovich, I Kapovich, P Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007) 1 · Zbl 1173.20031
[23] I Kapovich, The frequency space of a free group, Internat. J. Algebra Comput. 15 (2005) 939 · Zbl 1110.20031
[24] I Kapovich, Currents on free groups (editors R Grigorchuk, M Mihalik, M Sapir, Z Sunik), Contemp. Math. 394, Amer. Math. Soc. (2006) 149 · Zbl 1110.20034
[25] I Kapovich, Clusters, currents, and Whitehead’s algorithm, Experiment. Math. 16 (2007) 67 · Zbl 1158.20014
[26] I Kapovich, M Lustig, Domains of proper discontinuity on the boundary of Outer space · Zbl 1259.20050
[27] I Kapovich, M Lustig, Intersection form, laminations and currents on free groups, to appear in Geom. Funct. Anal. · Zbl 1242.20052
[28] I Kapovich, M Lustig, Ping-pong and Outer space · Zbl 1211.20027
[29] I Kapovich, M Lustig, The actions of \(\mathrm{Out}(F_k)\) on the boundary of outer space and on the space of currents: minimal sets and equivariant incompatibility, Ergodic Theory Dynam. Systems 27 (2007) 827 · Zbl 1127.20025
[30] I Kapovich, T Nagnibeda, The Patterson-Sullivan embedding and minimal volume entropy for outer space, Geom. Funct. Anal. 17 (2007) 1201 · Zbl 1135.20031
[31] G Levitt, M Lustig, Irreducible automorphisms of \(F_n\) have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003) 59 · Zbl 1034.20038
[32] M Lustig, A generalized intersection form for free groups, Preprint (2004)
[33] M Lustig, Conjugacy and centralizers for iwip automorphisms of free groups (editors G N Arzhantseva, L Bartholdi, J Burillo, E Ventura), Trends Math., Birkhäuser (2007) 197 · Zbl 1162.20020
[34] R. Martin, Nonuniquely ergodic foliations of thin type, measured currents and automorphisms of free groups, PhD thesis, UCLA (1995)
[35] H A Masur, Y N Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999) 103 · Zbl 0941.32012
[36] F Paulin, The Gromov topology on \(\mathbfR\)-trees, Topology Appl. 32 (1989) 197 · Zbl 0675.20033
[37] W Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
[38] H Zieschang, E Vogt, H D Coldewey, Flächen und ebene diskontinuierliche Gruppen, Lecture Notes in Math. 122, Springer (1970) · Zbl 0204.24002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.