×

zbMATH — the first resource for mathematics

Modulational instability of Rossby and drift waves and generation of zonal jets. (English) Zbl 1193.76059
Summary: We study the modulational instability of geophysical Rossby and plasma drift waves within the Charney-Hasegawa-Mima (CHM) model both theoretically, using truncated (four-mode and three-mode) models, and numerically, using direct simulations of CHM equation in the Fourier space. We review the linear theory of Gill [Geophys. Fluid Dyn. 6, 29 (1974)] and extend it to show that for strong primary waves the most unstable modes are perpendicular to the primary wave, which correspond to generation of a zonal flow if the primary wave is purely meridional. For weak waves, the maximum growth occurs for off-zonal inclined modulations that are close to being in three-wave resonance with the primary wave. Our numerical simulations confirm the theoretical predictions of the linear theory as well as the nonlinear jet pinching predicted by D. Yu. Manin and S. V. Nazarenko [Phys. Fluids 6, No. 3, 1158–1167 (1994; Zbl 0832.76014)]. We find that, for strong primary waves, these narrow zonal jets further roll up into Kármán-like vortex streets, and at this moment the truncated models fail. For weak primary waves, the growth of the unstable mode reverses and the system oscillates between a dominant jet and a dominate primary wave, so that the truncated description holds for longer. The two-dimensional vortex streets appear to be more stable than purely one-dimensional zonal jets, and their zonal-averaged speed can reach amplitudes much stronger than is allowed by the Rayleigh-Kuo instability criterion for the one-dimensional case. In the long term, the system transitions to turbulence helped by the vortex-pairing instability (for strong waves) and the resonant wave-wave interactions (for weak waves).

MSC:
76E20 Stability and instability of geophysical and astrophysical flows
76B65 Rossby waves (MSC2010)
86A10 Meteorology and atmospheric physics
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Sagdeev, Nonlinear Plasma Theory (1969)
[2] DOI: 10.1006/icar.2000.6449
[3] Bustamante, Europhys. Lett. 85 (2009)
[4] DOI: 10.1017/S0022112075001504 · Zbl 0366.76043
[5] DOI: 10.1017/S0022112009006375 · Zbl 1181.76071
[6] DOI: 10.1103/PhysRevLett.86.5831
[7] DOI: 10.1017/S002211206700045X · Zbl 0144.47101
[8] DOI: 10.1016/0375-9601(91)90105-H
[9] DOI: 10.5194/npg-11-241-2004
[10] DOI: 10.1016/0375-9601(90)90168-N
[11] DOI: 10.1103/PhysRevLett.103.118501
[12] Balk, Sov. Phys. JETP 71 pp 249– (1990)
[13] DOI: 10.1029/2006GL025865
[14] DOI: 10.1137/S0036144595291973 · Zbl 0874.35089
[15] DOI: 10.1063/1.862850
[16] DOI: 10.1016/0375-9601(91)90501-X
[17] McWilliams, Fundamentals of Geophysical Fluid Dynamics (2006)
[18] Arnold, Usp. Mat. Nauk 15 pp 247– (1960)
[19] DOI: 10.1029/2008GL033267
[20] DOI: 10.1063/1.868286 · Zbl 0832.76014
[21] DOI: 10.1088/0741-3335/43/6/307
[22] DOI: 10.1007/BF02257844
[23] DOI: 10.1175/1520-0469(1972)029<0258:BIORWM>2.0.CO;2
[24] DOI: 10.1175/1520-0477(1998)079<0039:CTDOTG>2.0.CO;2
[25] Kuo, J. Meteorol. 6 pp 105– (1949)
[26] DOI: 10.1063/1.1762301
[27] DOI: 10.1103/PhysRevLett.98.198501
[28] DOI: 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
[29] DOI: 10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2
[30] Horton, Chaos and Structures in Nonlinear Plasmas (1996)
[31] DOI: 10.1063/1.862083 · Zbl 0374.76046
[32] DOI: 10.1080/03091927409365786
[33] DOI: 10.1029/2004GL019691
[34] DOI: 10.1175/2007JAS2227.1
[35] Dorland, Bull. Am. Phys. Soc. 35 pp 2005– (1990)
[36] DOI: 10.1088/0741-3335/47/5/R01
[37] DOI: 10.1142/9789812771025_0017
[38] DOI: 10.1103/PhysRevLett.49.1408
[39] DOI: 10.1103/PhysRevE.63.046306
[40] DOI: 10.1063/1.873950
[41] Charney, J. Meteorol. 6 pp 371– (1949)
[42] DOI: 10.1006/icar.1999.6163
[43] Rudakov, Sov. Phys. Dokl. 6 pp 415– (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.