×

zbMATH — the first resource for mathematics

In-plane fracture of laminated fiber reinforced composites with varying fracture resistance: experimental observations and numerical crack propagation simulations. (English) Zbl 1193.74144
Summary: A series of experimental results on the in-plane fracture of a fiber reinforced laminated composite panel is analyzed using the variational multiscale cohesive method (VMCM). The VMCM results demonstrate the influence of specimen geometry and load distribution on the propagation of large scale bridging cracks in the fiber reinforced panel. Experimentally observed variation in fracture resistance is substantiated numerically by comparing the experimental and VMCM load-displacement responses of geometrically scaled single edge-notch three point bend (SETB) specimens. The results elucidate the size dependence of the traction-separation relationship for this class of materials even in moderately large specimens, contrary to the conventional understanding of it being a material property. The existence of a “free bridging zone” (different from the conventional “full bridging zone”) is recognized, and its influence on the evolving fracture resistance is discussed. The numerical simulations and ensuing bridging zone evolution analysis demonstrates the versatility of VMCM in objectively simulating progressive crack propagation, compared against conventional numerical schemes like traditional cohesive zone modeling, which require a priori knowledge of the crack path.

MSC:
74R99 Fracture and damage
74S30 Other numerical methods in solid mechanics (MSC2010)
74E30 Composite and mixture properties
74-05 Experimental work for problems pertaining to mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersson, T.; Stigh, U.: The stress elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces, International journal of solids and structures 41, 413-434 (2004)
[2] Armero, F.; Garikipati, K.: An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, International journal of solids and structures 33, 2863-2885 (1996) · Zbl 0924.73084 · doi:10.1016/0020-7683(95)00257-X
[3] Aveston, J., Cooper, G.A., Kelly, A., 1971. The properties of fibre composites. In: Conference Proceedings, National Physical Laboratory (IPC Science and Technology Press Ltd.).
[4] Aveston, J.; Kelly, A.: Theory of multiple fracture of fibrous composites, Journal of materials science 8, 352-362 (1973)
[5] Barenblatt, G. I.: The mathematical theory of equilibrium cracks in brittle fracture, Advances in applied mechanics 7, 55-129 (1962)
[6] Bazant, Z. P.; Kazemi, M. T.: Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length, Journal of the American ceramic society 73, 1841-1853 (1990)
[7] Belytschko, T.; Chen, H.; Xu, J. X.; Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, International journal for numerical methods in engineering 58, 1873-1905 (2003) · Zbl 1032.74662 · doi:10.1002/nme.941
[8] Belytschko, T.; Moes, N.; Usui, S.; Parimi, C.: Arbitrary discontinuities in finite elements, International journal for numerical methods in engineering 50, 993-1013 (2001) · Zbl 0981.74062 · doi:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
[9] Borja, R. L.; Regueiro, R. A.: A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation, Computer methods in applied mechanics and engineering 190, 1529-1549 (2000) · Zbl 1003.74074 · doi:10.1016/S0045-7825(00)00176-6
[10] Camacho, G. T.; Ortiz, M.: Computational modeling of impact damage in brittle materials, International journal of solids and structures 33, 2899-2938 (1996) · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[11] Cooper, G. A.: The fracture toughness of composites reinforced with weakened fibres, Journal of materials science 5, 645-654 (1970)
[12] Cox, B. N.: Extrinsic factors in the mechanics of bridged cracks, Acta metallurgica et materialia 39, 1189-1201 (1991)
[13] Dugdale, D. S.: Yielding of steel sheets containing slits, Journal of the mechanics and physics of solids 8, 100-108 (1960)
[14] Garikipati, K.: A variational multiscale method to embed micromechanical surface laws in the macromechanical continuum formulation, Computational modeling in engineering and sciences 3, 175-184 (2002) · Zbl 1098.74007
[15] Garikipati, K.; Hughes, T. J. R.: A study of strain-localization in a multiple scale framework the one dimensional problem, Computer methods in applied mechanics and engineering 159, 193-222 (1998) · Zbl 0961.74009 · doi:10.1016/S0045-7825(97)00271-5
[16] Gasser, T. C.; Holzapfel, G. A.: Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues, Computer methods in applied mechanics and engineering 192, 5059-5098 (2003) · Zbl 1088.74541 · doi:10.1016/j.cma.2003.06.001
[17] Hertzberg, R. W.: Deformation and fracture mechanics of engineering materials, (1983)
[18] Hillerborg, A.; Modeer, M.; Petersson, P. E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and concrete research 6, 773-782 (1976)
[19] Jin, Z. H.; Sun, C. T.: Cohesive zone modeling of interface fracture in elastic bi-materials, Engineering fracture mechanics 72, 1805-1817 (2005)
[20] Jin, Z. H.; Sun, C. T.: A comparison of cohesive zone modeling and classical fracture mechanics based on near tip stress field, International journal of solids and structures 43, 1047-1060 (2006) · Zbl 1119.74576 · doi:10.1016/j.ijsolstr.2005.06.074
[21] Jirasek, M.: Comparative study on finite elements with embedded discontinuities, Computer methods in applied mechanics and engineering 188, 307-330 (2000) · Zbl 1166.74427 · doi:10.1016/S0045-7825(99)00154-1
[22] Moes, N., Sukumar, N., Moran, B., Belytschko, T., 2000. An extended finite element method (x-fem) for two and three-dimensional crack modelling. Presented at ECCOMAS 2000, Barcelona, Spain.
[23] Mosler, J.; Meschke, G.: Embedded crack vs. Smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias, Computer methods in applied mechanics and engineering 193, 3351-3375 (2004) · Zbl 1060.74606 · doi:10.1016/j.cma.2003.09.022
[24] Nguyen, O.; Repetto, E. A.; Ortiz, M.; Radovitzky, R. A.: A cohesive model of fatigue crack growth, International journal of fracture 110, 351-369 (2001)
[25] Oliver, J.; Huespe, A. E.: Continuum approach to material failure in strong discontinuity settings, Computer methods in applied mechanics and engineering 193, 3195-3220 (2004) · Zbl 1060.74507 · doi:10.1016/j.cma.2003.07.013
[26] Oliver, J.; Huespe, A. E.; Sanchez, P. J.: A comparative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM, Computer methods in applied mechanics and engineering 195, 4732-4752 (2006) · Zbl 1144.74043 · doi:10.1016/j.cma.2005.09.020
[27] Pietruszczak, S. T.; Mroz, Z.: Finite element analysis of deformation of strain softening materials, International journal for numerical methods in engineering 17, 327-334 (1981) · Zbl 0461.73063 · doi:10.1002/nme.1620170303
[28] Rudraraju, S.S., Vignes, R., Salvi, A., Garikipati, K., Waas, A.M., 2008. A multiscale crack path predicting computational method for laminated fiber reinforced composites. In: Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, Illinois, USA .
[29] Scheider, I., Brocks, W., 2003. The effect of the traction-separation law on the results of cohesive zone crack propagation analyses. In: Fracture and Damage Mechanics, Proceedings of the 3rd International Conference on Fracture and Damage Mechanics, Trans Tech Publications, Zurich, Switzerland.
[30] Schellekens, J. C. J.; Borst, R. D.: On the numerical integration of interface elements, International journal for numerical methods in engineering 36, 43-66 (1993) · Zbl 0825.73840 · doi:10.1002/nme.1620360104
[31] Sorensen, B. F.; Jacobsen, T. K.: Large-scale bridging in composites: R-curves and bridging laws, Composites part A – applied science and manufacturing 29, 1443-1451 (1998)
[32] Tvergaard, V.; Hutchinson, J. W.: The relation between crack growth resistance and fracture parameters in elastic – plastic solids, Journal of the mechanics and physics of solids 40, 1377-1397 (1992) · Zbl 0775.73218 · doi:10.1016/0022-5096(92)90020-3
[33] Ungsuwarungsri, T.; Knauss, W. G.: The role of damage-softened material behavior in the fracture of composites and adhesives, International journal of fracture 35, 221-241 (1987)
[34] Wells, G. N.; Sluys, L. J.: A new method for modelling cohesive cracks using finite elements, International journal for numerical methods in engineering 50, 2667-2682 (2001) · Zbl 1013.74074 · doi:10.1002/nme.143
[35] Xie, D.; Biggers, S. B.: Strain energy release rate calculation for a moving delamination front of arbitrary shape based on virtual crack closure technique, part i: Formulation and validation, Engineering fracture mechanics 73, 771-785 (2006)
[36] Xie, D.; Biggers, S. B.: Strain energy release rate calculation for a moving delamination front of arbitrary shape based on virtual crack closure technique, part ii: Sensitivity study on modeling details, Engineering fracture mechanics 73, 786-801 (2006)
[37] Xie, D.; Chung, J.; Waas, A. M.; Shahwan, K. W.; J., A. Schroeder; Boeman, R. G.; Kunc, V.; Klett, L. B.: Failure analysis of adhesively bonded structures: from coupon level data to structure level predictions and verification, International journal of fracture 134, 231-250 (2005)
[38] Xie, D.; Salvi, A.; Sun, C.; Waas, A. M.; Caliskan, A.: Discrete cohesive zone model to simulate static fracture in 2D triaxially braided carbon fiber composites, Journal composite materials 40, 1-22 (2006)
[39] Xie, D.; Waas, A. M.: Discrete cohesive zone model for mixed-mode fracture using finite element analysis, Engineering fracture mechanics 73, 1783-1796 (2006)
[40] Xie, D., Waas, A.M., Shahwan, K.W., Schroeder, J.A., Boeman, R.G., 2004. Computation of energy release rates for kinking cracks based on virtual crack closure technique. CMES-Computer Modeling in Engineering and Sciences . · Zbl 1149.74394
[41] Xu, X. P.; Needleman, A.: Numerical simulation of fast crack growth in brittle solids, Journal of the mechanics and physics of solids 42, 1397-1434 (1994) · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.