×

zbMATH — the first resource for mathematics

Uniqueness of multiplicative determinants on elliptic pseudodifferential operators. (English) Zbl 1193.58018
The authors consider classical pseudodifferential operators defined on a closed \(n\)-dimensional manifold \(M\), acting on smooth sections of a vector bundle \(E\) over \(M\). The authors first prove that traces on the algebra of the zero-order operator are linear combinations of the residue of M. Wodzicki [in: K-theory, arithmetic and geometry, Semin., Moscow Univ. 19840-86, Lect. Notes Math. 1289, 320–399 (1987; Zbl 0649.58033)] and of leading symbols traces given by any current \(\lambda\in (C^\infty(S^*M))'\). Attention is then fixed on multiplicative determinants on the pointwise connected component of identity, in the group of the invertible operators. Exhaustive results are presented.

MSC:
58J52 Determinants and determinant bundles, analytic torsion
58J42 Noncommutative global analysis, noncommutative residues
58J40 Pseudodifferential and Fourier integral operators on manifolds
35S05 Pseudodifferential operators as generalizations of partial differential operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bost, Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs, Invent. Math. 101 pp 261– (1990) · Zbl 0719.46038 · doi:10.1007/BF01231504
[2] Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 pp 93– (1988) · Zbl 0634.58029 · doi:10.4310/jdg/1214442161
[3] Brylinski, The homology of algebras of pseudodifferential symbols and non commutative residues, K-theory 1 pp 385– (1987) · Zbl 0646.58026 · doi:10.1007/BF00539624
[4] Booss-Bavnbek, Elliptic boundary problems for Dirac operators (1993) · Zbl 0836.58041 · doi:10.1007/978-1-4612-0337-7
[5] Cartan, Homological algebra (1956)
[6] Connes, Noncommutative geometry (1994)
[7] de la Harpe, Déterminant associé à une trace sur une algèbre de Banach, Ann. Inst. Fourier (Grenoble) 34 pp 241– (1984) · Zbl 0521.46037 · doi:10.5802/aif.958
[8] Hawking, Zeta function regularization of path integrals on curved spacetime, Comm. Math. Phys. 55 pp 133– (1977) · Zbl 0407.58024 · doi:10.1007/BF01626516
[9] Hörmander, The analysis of linear partial differential operators. III. Pseudodifferential operators (1994)
[10] Karoubi, K-theory (an introduction) (1978) · Zbl 0382.55002
[11] Kassel, ’Le résidu non commutatif (daprès M. Wodzicki)’, Séminaire Bourbaki, Astérisque 177/178 pp 199– (1989)
[12] Kriegel, The convenient setting of global analysis (1997) · Zbl 0889.58001 · doi:10.1090/surv/053
[13] Kontsevich, Geometry of determinants of elliptic operators I, in: Functional analysis on the eve of the XXI century pp 173– (1994)
[14] Kontsevich, Determinants of elliptic pseudodifferential operators (1994)
[15] Lesch, On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols, Ann. Global Anal. Geom. 17 pp 151– (1999) · Zbl 0920.58047 · doi:10.1023/A:1006504318696
[16] Loday, Cyclic homology (1998) · doi:10.1007/978-3-662-11389-9
[17] Mac Lane, Homology (1963) · doi:10.1007/978-3-642-62029-4
[18] Melrose, Homology of pseudo-differential operators I. Manifolds with boundary (1996)
[19] Okikiolu, The multiplicative anomaly for determinants of elliptic operators, Duke Math. J. 79 pp 723– (1995) · Zbl 0851.58048 · doi:10.1215/S0012-7094-95-07919-8
[20] Ponge, Cayley-Hamiltonian decomposition and spectral asymmetry (2004)
[21] Ponge, Spectral asymmetry, zeta functions and the noncommutative residue, Internat. J. Math. 17 pp 1065– (2006) · Zbl 1127.58030 · doi:10.1142/S0129167X06003825
[22] Paycha, Traces and characteristic classes in loop groups, in: Infinite dimensional groups and manifolds pp 185– (2004)
[23] Paycha, Conformal anomalies via canonical traces, in: Analysis, geometry and topology of elliptic operators pp 263– (2006) · doi:10.1142/9789812773609_0011
[24] Ray, R-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 pp 145– (1971) · Zbl 0239.58014 · doi:10.1016/0001-8708(71)90045-4
[25] Scott, The residue determinant, Comm. Partial Differential Equations 30 pp 483– (2005) · Zbl 1236.58037 · doi:10.1081/PDE-200050102
[26] R. T. Seeley A. P. Calderón Complex powers of an elliptic operator Singular integrals 1967 1966 Providence, RI American Mathematical Society 288 307
[27] Wegge-Olsen, K-theory and C*-algebras (1994)
[28] Weibel, An introduction to homological algebra (1994) · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
[29] Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 pp 143– (1984) · Zbl 0538.58038 · doi:10.1007/BF01403095
[30] Wodzicki, Non commutative residue, Chapter I. Fundamentals, in: K-Theory, arithmetic and geometry pp 320– (1987) · doi:10.1007/BFb0078372
[31] Wodzicki, Cyclic homology of differential operators, Duke Math. J. 54 pp 641– (1987) · Zbl 0635.18010 · doi:10.1215/S0012-7094-87-05426-3
[32] Wodzicki, Cyclic homology of pseudodifferential operators and noncommutative Euler class, C. R. Acad. Sci. 306 pp 321– (1998) · Zbl 0657.58043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.